Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2017 2018 trường THPT chuyên Trần Phú Hải Phòng

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2017 2018 trường THPT chuyên Trần Phú Hải Phòng Bản PDF Đề thi HK1 Toán lớp 10 năm học 2017 – 2018 trường THPT chuyên Trần Phú – Hải Phòng gồm 4 trang với 40 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho phương trình (m^2 – 1)x + m + 1 = 0. Khẳng định nào dưới đây là sai? A. Khi m ≠ ±1, phương trình có nghiệm duy nhất B. Khi m = 1, phương trình có tập nghiệm S = ∅ C. Khi m = -1, phương trình có tập nghiệm S = R D. Khi m = ±1, phương trình vô nghiệm [ads] + Chuẩn bị được nghỉ hè, một lớp có 45 học sinh cùng bàn nhau để cả lớp cùng đi tham quan du lịch. Do sự lựa chọn của các bạn không được tập trung và thống nhất vào một địa điểm nào, Lớp Trưởng đã lấy biểu quyết bằng cách giơ tay. Kết quả, hai lần số bạn chọn đi Tam Đảo thì ít hơn ba lần số bạn chọn đi Hạ Long là 3 bạn và có 9 bạn chọn đi địa điểm khác. Với nguyên tắc số ít hơn phải theo số đông hơn thì họ sẽ tham quan du lịch đến địa điểm là: A. Địa điểm khác B. Tạm hoãn để bàn lại C. Tam Đảo D. Hạ Long + Cho tam giác ABC, tập hợp điểm M thỏa mãn |vtMA + vtBC| = 1/2.|vtMA – vtMB| là: A. Đường trung trực đoạn BC B. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABIC C. Đường thẳng song song với BC D. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABCI

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 - 2021 trường chuyên Nguyễn Huệ - Hà Nội
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.
Đề thi HK1 Toán 10 chuyên năm 2020 - 2021 trường chuyên Lê Hồng Phong - Nam Định
Đề thi HK1 Toán 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có các đường cao AH, BE, CF. Tiếp tuyến tại B và C của (O) cắt nhau tại T. Gọi D là giao điểm của AT và BC, S là giao điểm của EF và BC, G là hình chiếu vuông góc của T trên AO, J là giao điểm thứ hai của TH và đường tròn ngoại tiếp tam giác OBC. Chứng minh: a) Các điểm S, J, M, T cùng thuộc một đường tròn, với M là trung điểm của BC. b) Các đường thẳng SO, TH, DG đồng quy tại một điểm. + Tìm số dư khi chia 11^12 + 12^13 + 13^14 cho 7. + Cho p là số nguyên tố và a, b là các số nguyên dương lẻ thỏa mãn a – b chia hết cho p – 1 và a + b chia hết cho p. Chứng minh a^b + b^a chia hết cho p.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Nguyễn Thị Minh Khai - TP HCM
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-5;0), B(1;0), C(2;3). a) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC. b) Tìm tọa độ điểm M thuộc tia Oy sao cho |2MA – MB| nhỏ nhất. + Tìm giá trị lớn nhất của hàm số y = f(x) = x(3 – 2x) khi 0 =< x =< 3/2. + Giải các phương trình và hệ phương trình sau.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC biết A(2;1), B(1;2), C(4;3). a) Chứng minh ABC là tam giác vuông cân. b) Tìm giao điểm của đường thẳng AB và trục tung. c) Tìm tọa độ điểm D sao cho ABCD là hình thang có AD // BC và diện tích ABCD bằng 15. + Cho hình vuông ABCD cạnh a, gọi I là giao điểm của AC và BD. M là điểm thỏa MA2 + MB2 + MC2 + MD2 = 12a2, tính MI. + Cho phương trình (2x^2 – 8x + m)/(x^2 – 4x + 3) = 1. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm.