Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 vòng 2 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 vòng 2 năm học 2022 – 2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 10 vòng 2 năm 2022 – 2023 trường THPT Nguyễn Gia Thiều – Hà Nội : + Bài toán sản xuất: Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau: Nhóm Số máy trong mỗi nhóm Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm Sản phẩm I Sản phẩm II A 10 2 2 B 2 0 1 C 12 1 3. Cho biết một đơn vị sản phẩm I lãi 30 nghìn đồng, một đơn vị sản phẩm II lãi 50 nghìn đồng. Em hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi cao nhất. + Bài toán “Lá cờ Việt Nam”: Trong toán học và nghệ thuật, hai đại lượng được gọi là có tỷ số vàng hay tỷ lệ vàng nếu tỷ số giữa tổng của các đại lượng đó với đại lượng lớn hơn bằng tỷ số giữa đại lượng lớn hơn với đại lượng nhỏ hơn. Tỷ lệ vàng thường được ký hiệu bằng ký tự (phi) trong bảng chữ cái Hy Lạp nhằm tưởng nhớ đến Phidias, nhà điêu khắc đã xây dựng nên đền Parthenon. Tỷ lệ vàng được biểu diễn a b aa b trong đó a b. Hình chữ nhật tỷ lệ vàng với cạnh dài a và cạnh ngắn b, khi đặt cạnh hình vuông có cạnh a, sẽ tạo thành hình chữ nhật đồng dạng tỷ lệ vàng với cạnh dài a b và cạnh ngắn a. Đây cũng minh họa cho liên hệ a b a a b. Bằng kiến thức liên quan đến toán học, em hãy nêu một lí do mà Hiến pháp năm 2013 đã quy định: Quốc kỳ nước Cộng hoà xã hội chủ nghĩa Việt Nam hình chữ nhật có chiều rộng bằng hai phần ba chiều dài. + Cho hàm số 2 y x x 2 8 có đồ thị là parabol P. Lấy hai điểm A(-1;-5) và B(5;7) thuộc P. Tìm tọa độ điểm C trên cung AB của P sao cho tam giác ABC có diện tích lớn nhất và tính diện tích đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 - 2021 sở GDĐT Hà Tĩnh
Đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Một cửa hàng chuyên kinh doanh xe máy điện với chi phí mua vào là 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe này, chủ cửa hàng dự định giảm giá bán và ước tính rằng, theo tỉ lệ nếu cứ giảm 100 nghìn đồng mỗi chiếc thì số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải bán với giá mới là bao nhiêu để sau khi giảm giá, lợi nhuận thu được sẽ là cao nhất? + Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác r = √3 và độ dài đường cao kẻ từ đỉnh A là h thỏa mãn 1/h2 = 1/AB2 + 1/AC2. Tính giá trị T = (sin B)^2 – (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết rằng tam giác ABC cân tại B và DC = √5/5.
Đề thi HSG cấp trường Toán 10 năm 2020 - 2021 trường Cẩm Xuyên - Hà Tĩnh
Ngày … tháng 01 năm 2021, trường THPT Cẩm Xuyên, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2020 – 2021. Đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG cấp trường Toán 10 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC và M, N là hai điểm lần lượt thuộc hai cạnh AB, CD sao cho AB = 6BM, DC = 3DN. a) Tính độ dài của vectơ AB + AD theo a. b) Chứng minh ba điểm M, N, G thẳng hàng. + Cho hàm số y = x2 + mx + 1 (m là tham số). a) Lập bảng biến thiên của hàm số đã cho khi m = -4. b) Tìm điều kiện của tham số m để đồ thị hàm số đã cho cắt đường thẳng y = x + 1 tại hai điểm phân biệt nằm về một phía của trục hoành. + Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ dưới đây. Chứng minh rằng phương trình (1 – c)x2 + (2 – b)x + 1 – a = 0 luôn có hai nghiệm phân biệt.
Đề thi HSG Toán 10 cấp trường năm 2020 - 2021 trường THPT Nguyễn Huệ - Quảng Nam
Đề thi HSG Toán 10 cấp trường năm 2020 – 2021 trường THPT Nguyễn Huệ – Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có ma trận và lời giải chi tiết. Ma trận đề thi HSG Toán 10 cấp trường năm 2020 – 2021 trường THPT Nguyễn Huệ – Quảng Nam:CHỦ ĐỀMÔ TẢHệ phương trình.Thông hiểu: Giải hệ hai phương trình bậc nhất hai ẩn.Phương trình bậc hai một ẩn.Nhận biết: Giải phương trình quy về phương trình bậc hai một ẩn. Nhận biết: Chứng minh phương trình bậc hai luôn có nghiệm hoặc vô nghiệm với mọi tham số.Hệ thức Vi-et và ứng dụng.Vận dụng thấp: Tìm tất cả các giá trị của tham số m thỏa điều kiện cho trước.Hàm số y = ax^2 (a khác 0).Nhận biết: Vẽ parabol. Thông hiểu: Tương quan giữa đường thẳng và parabol.Biến đổi đơn giản biểu thức chứa căn thức bậc hai.Vận dụng thấp: Rút gọn biểu thức chứa căn thức bậc hai.Một số hệ thức về cạnh và đường cao trong tam giác vuông.Thông hiểu: Chứng minh đẳng thức có liên quan đến cạnh và đường cao của tam giác vuông. Vận dụng cao: Ứng dụng một số hệ thức về cạnh và đường cao trong tam giác vuông để giải một số bài toán liên quan. Vận dụng cao: Ứng dụng một số hệ thức về cạnh và đường cao trong tam giác vuông để giải một số bài toán liên quan.