Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập tam giác đồng dạng

Tài liệu gồm 48 trang, tóm tắt lý thuyết, các dạng toán và bài tập tam giác đồng dạng, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Hình học chương 3. Bài 1. Định lí Ta-lét trong tam giác. + Dạng 1. Tính toán, chứng minh về tỉ số của hai đoạn thẳng và đoạn thẳng tỉ lệ. + Dạng 2. Sử dụng định lí Ta-lét để tính độ dài đoạn thẳng. + Dạng 3. Sử dụng định lí Ta-lét để chứng minh các hệ thức. Bài 2. Định lí đảo và hệ quả của định lí Ta-lét. + Dạng 1. Sử dụng hệ quả của định lí Ta-lét để tính độ dài đoạn thẳng. + Dạng 2. Sử dụng hệ quả của định lí Ta-lét để chứng minh các hệ thức. + Dạng 3. Sử dụng định lí Ta-lét đảo để chứng minh hai đường thẳng song song. + Dạng 4. Phối hợp định lí Ta-lét thuận và đảo. + Dạng 5. Áp dụng vào toán dựng hình. Trong bốn đoạn thẳng tỉ lệ, dựng đoạn thẳng thứ tư khi biết độ dài ba đoạn kia. Bài 3. Tính chất đường phân giác của tam giác. + Dạng 1. Vận dụng tính chất đường phân giác của tam giác để tính độ dài đoạn thẳng. + Dạng 2. Vận dụng tính chất đường phân giác của tam giác để tính tỉ số độ dài hai đoạn thẳng. + Dạng 3. Đường phân giác ngoài của tam giác. Bài 4. Khái niệm hai tam giác đồng dạng. + Dạng 1. Vẽ tam giác đồng dạng với một tam giác cho trước. + Dạng 2. Tính chất hai tam giác đồng dạng. + Dạng 3. Chứng minh hai tam giác đồng dạng. Bài 5. Trường hợp đồng dạng thứ nhất. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ nhất. + Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để chứng minh các góc bằng nhau. Bài 6. Trường hợp đồng dạng thứ hai. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ hai để tính độ dài đoạn thẳng, chứng minh hai góc bằng nhau. + Dạng 2. Sử dụng các tam giác đồng dạng để dựng hình. Bài 7. Trường hợp đồng dạng thứ ba. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ ba để tính đồ dài hai đoạn thẳng. + Dạng 2. Nhận biết hai tam giác vuông đồng dạng theo trường hợp thứ ba. + Dạng 3. Sử dụng tam giác đồng dạng để dựng hình. Bài 8. Các trường hợp đồng dạng của tam giác vuông. + Dạng 1. Các trường hợp đồng dạng của tam giác vuông suy từ các trường hợp đồng dạng của tam giác. + Dạng 2. Trường hợp đồng dạng cạnh huyền – cạnh góc vuông. + Dạng 3. Tỉ số hai đường cao của hai tam giác đồng dạng. Bài 9. Ứng dụng thực tế của tam giác đồng dạng. + Dạng 1. Đo gián tiếp chiều cao. + Dạng 2. Đo gián tiếp khoảng cách, bề dày. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình chữ nhật
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm diện tích đa giác. Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó. Mỗi đa giác có một diện tích là một số dương xác định. Diện tích đa giác có các tính chất sau: + Hai tam giác bằng nhau thì có diện tích bằng nhau. + Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. + Nếu chọn hình vuông có cạnh 1 cm, 1 dm, 1 m … làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 cm2, 1 dm2, 1 m2 … 2. Công thức tính diện tích một số hình cơ bản. + Diện tích hình chữ nhật bằng tích hai kích thước của nó. + Diện tích hình vuông bằng bình phương cạnh của nó. + Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông. + Diện tích tam giác thường bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Sử dụng ba khái niệm diện tích của đa giác. Dạng 2. Diện tích hình chữ nhật. Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật. Dạng 3. Diện tích hình vuông. Phương pháp giải: Sử dụng công thức tính diện tích hình vuông. Dạng 4. Diện tích tam giác vuông. Phương pháp giải: Sử dụng công thức tính diện tích tam giác vuông và định lí Pytago. Dạng 5. Tổng hợp các dạng trên. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Diện tích hình chữ nhật. Dạng 2: Tính độ dài các cạnh của hình chữ nhật. Dạng 3: Diện tích hình vuông. Diện tích tam giác vuông. Dạng 4: Bài tập tổng hợp.
Chuyên đề đa giác, đa giác đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đa giác, đa giác đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Đa giác: Đa giác A1A2…An là hình gồm n đoạn thẳng A1A2; A2A3;…AnA1 trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng. 2. Đa giác lồi: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác. 3. Các khái niệm khác. + Một đa giác có n đỉnh được gọi n-giác. + Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA + Dạng 1. Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác trong phần Tóm tắt lý thuyết ở trên. + Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Tổng các góc trong của đa giác n cạnh (n > 2) là (n – 2).180°. + Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. + Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa đa giác đều, công thức tính góc của đa giác đều. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình vuông
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP A. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Nhận dạng hình vuông. Phương pháp giải: Sử dụng một trong hai cách sau: + Cách 1: Chứng minh tứ giác là hình chữ nhật có thêm dấu hiệu hai cạnh kề bằng nhau hoặc hai đường chéo vuông góc hoặc một đường chéo là đường phân giác của một góc. + Cách 2: Chứng minh tứ giác là hình thoi có thêm dấu hiệu có một góc vuông hoặc hai đường chéo bằng nhau. Dạng 2. Sử dụng định nghĩa, tính chất của hình vuông để chứng minh các quan hệ bằng nhau, song song, vuông góc, thẳng hàng. Phương pháp giải: Sử dụng định nghĩa, tính chất và bổ đề về hình vuông. Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. Phương pháp giải: + Sử dụng các dấu hiệu nhận biết hình vuông. + Nếu bài toán chỉ yêu cầu tìm vị trí của một điểm nào đó để một hình trở thành hình vuông ta làm như sau: giả sử hình đó là hình vuông rồi dựa vào các tính chất của hình vuông để chỉ ra vị trí cần tìm. B. PHIẾU BÀI TẬP RÈN LUYỆN
Chuyên đề hình thoi
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC Dạng 1. Chứng minh tứ giác là hình thoi. Phương pháp: Sử dụng các dấu hiệu nhận biết. + Tứ giác có bốn cạnh bằng nhau là hình thoi. + Hình bình hành có hai cạnh kề bằng nhau là hình thoi. + Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. + Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học. Phương pháp: Sử dụng tính chất và định nghĩa của hình thoi để giải toán. + Hình thoi là tứ giác có bốn cạnh bằng nhau. + Hình thoi có tất cả các tính chất của hình bình hành: Các cạnh đối song song và bằng nhau, các góc đối bằng nhau. Hai đường chéo cắt nhau tại trung điểm của mỗi đường. + Ngoài ra, trong hình thoi có: Hai đường chéo vuông góc với nhau. Hai đường chéo là các đường phân giác của các góc của hình thoi. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình thoi. Dạng 4. Tổng hợp. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1: Nhận biết tứ giác là hình thoi. Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. C. PHIẾU BÀI TỰ LUYỆN CB – NC Dạng 1: Chứng minh một tứ giác là hình thoi. Dạng 2: Vận dụng kiến thức hình thoi để chứng minh và giải toán.