Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 1 trường chuyên ĐHSP Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 1 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 1 trường chuyên ĐHSP Hà Nội : + Cửa hàng An Bình niêm yết giá một bông hồng là 25000 đồng. Nếu khách hàng mua nhiều hơn 10 bông thì từ bông thứ 11 trở đi, mỗi bông được giảm 10% trên giá niêm yết. Nếu mua nhiều hơn 20 bông thì từ bông thứ 21 trở đi, mỗi bông được giảm thêm 20% trên giá đã giảm. a) Nếu khách hàng mua 30 bông hồng tại cửa hàng An Bình thì phải trả bao nhiêu tiền? b) Bạn Dũng đã mua một số bông hồng tại cửa hàng An Bình với số tiền 925000 đồng. Hỏi bạn Dũng đã mua bao nhiêu bông hồng? + Cho hệ phương trình (m là tham số). a) Tìm m để hệ có nghiệm duy nhất (x; y) và tìm nghiệm duy nhất đó. b) Với (x; y) là nghiệm duy nhất ở trên thỏa mãn điều kiện x >= y. Tìm giá trị lớn nhất của biểu thức H = x + y. + Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O; R). Kẻ đường kính AK của (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a) Chứng minh tứ giác BHCK là hình bình hành và SABC = AB.BC.CA/4R. b) Gọi M là trung điểm của BC, T là điểm đối xứng với O qua M. Chứng minh T là tâm đường tròn ngoại tiếp tam giác HBC và AH2 + BC2 = 4R2. c) Biết AH2 + BH2 + CH2 = 7 và AH.BH.CH = 3. Tính R.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bình Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Thuận; kỳ thi được diễn ra vào thứ Sáu ngày 11 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Thuận : + Một phân xưởng theo kế hoạch phải may 1200 bộ quần áo trong một thời gian quy định. Khi thực hiện, do cải tiến kỹ thuật nên mỗi ngày phân xưởng may thêm được 10 bộ quần áo và hoàn thành kế hoạch trước 4 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng may bao nhiêu bộ quần áo? + Một cốc nước dạng hình trụ có chiều cao là 15 cm, bán kính đáy là 3 cm và lượng nước ban đầu trong các cao 10 cm. Thả chìm hoàn toàn vào cốc nước 5 viên bi thủy tinh hình cầu có cùng bán kính là 1 cm. Hỏi sau khi thả 5 viên bi, mực nước trong cốc cách miệng cốc một khoảng bằng bao nhiêu? (Giả sử độ dày của thành cốc và đáy cốc không đáng kể; kết quả làm tròn đến chữ số thập phân thứ hai). + Ba bạn Đào, Mai, Trúc mặc ba chiếc áo màu trắng, hồng, xanh và đeo ba cái khẩu trang cùng màu trắng, hồng, xanh. Biết rằng: a) Trúc đeo khẩu trang màu xanh. b) Chỉ có bạn Đào là có màu áo và màu khẩu trang giống nhau. c) Màu áo và màu khẩu trang của bạn Mai đều không phải màu trắng. Dựa vào các thông tin trên, em hãy cho biết mỗi bạn Đào, Mai, Trúc mặc áo màu gì và đeo khẩu trang màu gì?
Đề tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2021 – 2022 sở GD&ĐT Đắk Lắk; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Đắk Lắk : + Cho phương trình 𝑥 4 − (𝑚 + 2)𝑥2 + 3𝑚 − 3 = 0 với 𝑚 là tham số. Tìm tất cả các giá trị của 𝑚 để phương trình đã cho có bốn nghiệm phân biệt 𝑥1, 𝑥2, 𝑥3, 𝑥4 sao cho 𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 − 2𝑥1𝑥2𝑥3𝑥4 đạt giá trị nhỏ nhất. + Cho ba số thực dương 𝑎, 𝑏, 𝑐 thỏa mãn 𝑎 + 𝑏 + 𝑐 ≤ 2. Tìm giá trị nhỏ nhất của biểu thức: 𝑃 = 𝑏(𝑎2 + 1)2 𝑎2(𝑏2 + 1) + 𝑐(𝑏2 + 1)2 𝑏2(𝑐2 + 1) + 𝑎(𝑐2 + 1)2 𝑐2(𝑎2 + 1). + Cho nửa đường tròn (𝑂; 𝑅) đường kính AB. Lấy điểm C tùy ý trên nửa đường tròn đó (C khác A và B). Gọi M N lần lượt là điểm chính giữa cung AC và cung BC. Hai đường thẳng AC và BN cắt nhau tại D. Hai dây cung AN và BC cắt nhau tại H. 1) Chứng minh tứ giác CDNH nội tiếp. 2) Gọi I là trung điểm DH. Chứng minh IN là tiếp tuyến của nửa đường tròn (𝑂; 𝑅). 3) Chứng minh rằng khi C di động trên nửa đường tròn (𝑂; 𝑅) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. 4) Trên nửa đường tròn (𝑂; 𝑅) không chứa C lấy một điểm P tùy ý (P khác A và B). Gọi Q,R,S lần lượt là hình chiếu vuông góc của P trên AB, BC, CA. Tìm vị trí của P để tổng 𝐴𝐵 𝑃𝑄 + 𝐵𝐶 𝑃𝑅 + 𝐶𝐴 𝑃𝑆 đạt giá trị nhỏ nhất.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Cần Thơ; đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 4,0 điểm, phần tự luận gồm 04 câu, chiếm 6,0 điểm, thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Cần Thơ : + Tìm tất cả các giá trị của tham số m sao cho phương trình 2 x mx m 1 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 1 2 1 2 1 1 x x x x. + Trong năm học 2020 – 2021, trường Trung học cơ sở A tổ chức cho học sinh đăng ký tham gia câu lạc bộ Toán học và câu lạc bộ Sáng tạo khoa học. Ở học kỳ 1, số lượng học sinh tham gia câu lạc bộ Toán học ít hơn số lượng học sinh tham gia câu lạc bộ Sáng tạo khoa học là 50 học sinh. Sang học kỳ 2, có 5 học sinh chuyển từ câu lạc bộ Sáng tạo khoa học sang câu lạc bộ Toán học nên số lượng học sinh của câu lạc bộ Toán học bằng 3 4 số lượng học sinh của câu lạc bộ Sáng tạo khoa học. Biết rằng trong năm học, tồng số học sinh tham gia cả hai câu lạc bộ không thay đổi và mỗi học sinh chỉ tham gia một câu lạc bộ. Hỏi số lượng học sinh của mỗi câu lạc bộ ở học kỳ 2 là bao nhiêu? + Cho tam giác ABC (AB < AC) có ba góc nhọn và nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại điểm H. a) Chứng minh các tứ giác BCEF, EHDC nội tiếp. b) Gọi K là giao điểm của hai đường thẳng EF và BC. Đường thẳng AK cắt đường tròn (O) tại điểm thứ hai là I. Chứng minh tam giác KBF đồng dạng với tam giác KEC và KI.KA = KF.KE. c) Qua điểm B vẽ đường thẳng song song với đường thẳng AC cắt các đường thẳng AK và AH lần lượt tại điểm M và điểm N. Chứng minh HM = HN.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Đắk Lắk; đề thi có đáp án và lời giải chi tiết (lời giải được trình bày bởi thầy giáo Nguyễn Dương Hải – giáo viên Toán trường THCS Nguyễn Chí Thanh, Buôn Ma Thuộc, Đắk Lắk). Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đắk Lắk : + Trên nửa đường tròn O đường kính AB với AB 2022, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. 1) Chứng minh tứ giác BHDE là tứ giác nội tiếp. 2) Chứng minh AD EC CD AC. 3) Chứng minh 2 AD AE BH BA 2022. 4) Khi điểm C di động trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB), xác định vị trí điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất. + Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng đi qua điểm A 1 2 và song song với đường thẳng y x 2 1. + Trong mặt phẳng tọa độ Oxy cho Parabol 2 P y x và đường thẳng d y m x m 2 1 3. Gọi 1 2 x x là hoành độ giao điểm của đường thẳng d và Parabol P. Tìm giá trị nhỏ nhất của 2 2 M x x 1 2.