Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường Lương Định Của Cần Thơ

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2018 2019 trường Lương Định Của Cần Thơ Bản PDF Đề thi HK1 Toán lớp 10 năm 2018 – 2019 trường Lương Định Của – Cần Thơ mã đề 123 gồm 3 trang với 25 câu trắc nghiệm khách quan kết hợp với 3 câu tự luận, học sinh có 90 phút để hoàn thành bài thi, kỳ thi được tổ chức tại trường vào ngày 20 tháng 12 năm 2018, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2018 – 2019 trường Lương Định Của – Cần Thơ : + Bạn An đến siêu thị để mua một chiếc quần Jean và một chiếc áo sơ mi với tổng trị giá là 765.000 đồng (theo giá niêm yết của siêu thị trước đây). Khi đến mua, An được biết hiện hai mặt hàng trên đang được giảm giá. So với giá cũ thì quần được giảm 40%, áo được giảm 30%. Thấy giá rẻ, An đã quyết định mua hai quần và ba áo. Do đó, so với dự tính ban đầu, An đã phải trả thêm 405.000 đồng. Hỏi giá tiền ban đầu của một quần Jean và một áo sơ mi lần lượt là bao nhiêu? A. 489.000 đồng và 276.000 đồng. B. 495.000 đồng và 270.000 đồng. C. 500.000 đồng và 265.000 đồng. D. 485.000 đồng và 280.000 đồng. [ads] + Trong mặt phẳng Oxy cho hai điểm A(-3;1), B(2;0) và điểm G(0;2) là trọng tâm tam giác ABC. Tìm tọa độ điểm C. + Trong mặt phẳng Oxy cho ba điểm A(-2;1), B(-1;4), C(4;-1). Tính AB.AC. Tính chu vi tam giác ABC. Tính diện tích tam giác ABC. Tìm tọa độ điểm M sao cho AM + 2CB = 3MB. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Xác định Parabol (P): y = ax2 + bx + c có đồ thị hàm số như hình vẽ sau. + Giải các phương trình và hệ phương trình sau. + Tìm tất cả các giá trị thực của tham số m để phương trình vô nghiệm.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phạm Văn Sáng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Xác định parabole (P): y = ax2 + 6x + c qua C(2;5) và có trục đối xứng x = 1. + Trong mặt phẳng tọa độ Oxy, cho ∆ABC biếtA(-3;1), B (3;3), C(4;0). a) Chứng minh ∆ABC vuông. b) Tìm tọa độ điểm D sao cho DBAC là hình bình hành. c) Gọi H là hình chiếu vuông góc của B lên đường thẳng AC. Tìm tọa độ điểm H. + Với những giá trị nào của m thì phương trình x2 + 2(m – 4)x + m2 – 2 = 0 có hai nghiệm x1, x2 thỏa 3x1x2 + x1^2 + x2^2 = 18.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phước Kiển - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phước Kiển, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phước Kiển – TP HCM : + Trong mặt phẳng Oxy, cho ba điểm A(-1;-1), B(3;1), C(6;0). a) Chứng minh rằng ba điểm A, B, C lập thành một tam giác. b) Tìm toạ độ điểm E thuộc Oy sao cho tam giác ABE vuông tại B. c) Tính góc 𝐴𝐵𝐶 và chu vi của tam giác ABC. + Xác định hàm số (P): y = -x2 + bx + c, biết đồ thị của hàm số (P) đi qua điểm A(-2;0) và có trục đối xứng là x = -5. + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = 2×2 – 4x + 2.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phú Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phú Hòa, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phú Hòa – TP HCM : + Một trường THPT có tổng số học sinh khối 10, khối 11 và khối 12 là 1378 học sinh. Tổng số học sinh khối 10 và khối 11 bằng 38/15 số học sinh khối 12. Biết rằng 3 lần số học sinh khối 12 nhiều hơn 2 lần số học sinh khối 10 là 106 học sinh. Hỏi mỗi khối có bao nhiêu học sinh? + Tìm tập xác định của hàm số. + Cho tam giác ABC có AB = 7a, BC = 8a, AC = 9a. a) Tính diện tích tam giác ABC. b) Tính bán kính đường tròn ngoại tiếp tam giác ABC và cos ACB.