Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội

Nội dung Đề thi thử Toán vào lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội Đề thi thử Toán vào lớp 10 lần 2 năm 2021 của trường chuyên Đại học Sư phạm Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 90 phút. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội: Một nhà máy theo kế hoạch cần sản xuất 20000 hộp khẩu trang trong thời gian quy định, với số hộp khẩu trang sản xuất được mỗi ngày bằng nhau. Trong quá trình sản xuất, nhà máy đã vượt kế hoạch mỗi ngày 100 hộp khẩu trang. Điều này đã giúp nhà máy hoàn thành công việc trước thời hạn 10 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy cần sản xuất bao nhiêu hộp khẩu trang? Cho phương trình x2 + (1 - m)x - 2m - 4 = 0 với m là tham số. Hãy chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của tham số m. Sau đó, tính giá trị của T = (x1 + 2)(x2 + 2). Được cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi M là điểm tùy ý trên cung nhỏ AC. Tia DM cắt các đường thẳng AB, AC và BC lần lượt tại N, P, và Q. Hãy chứng minh rằng tứ giác AOCH nội tiếp và tia HO là tia phân giác của góc AHC. Tiếp theo, chứng minh PA/PC = HA/HC và cuối cùng, chứng minh điều đó. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức đến từ nhiều phần khác nhau của môn Toán để giải quyết các vấn đề phức tạp. Việc giải quyết các bài toán này sẽ giúp học sinh rèn luyện tư duy logic, khả năng giải quyết vấn đề và làm việc độc lập.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chào đón quý thầy cô giáo và các em học sinh lớp 9! Hãy cùng Sytu khám phá đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Kỳ thi dự kiến diễn ra vào ngày thứ Năm, 16 tháng 06 năm 2022. Đề thi được thực hiện bởi thầy giáo Nguyễn Hải Dương, giáo viên Toán tại trường THCS Phan Chu Trinh, thành phố Buôn Ma Thuột, tỉnh Đắk Lắk. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Đắk Lắk: Hãy giải quyết câu đố về việc mua sách của bạn An để ôn thi tuyển sinh, cùng những bài toán thú vị khác về tam giác và parabol để rèn luyện khả năng giải toán của bạn. Chúng ta sẽ cùng tìm ra giá niêm yết của cuốn sách tham khảo Toán và sách tham khảo Ngữ Văn mà An mua, thông qua việc giảm giá và tăng giá của cửa hàng sách. Ngoài ra, chúng ta cũng sẽ cùng khám phá những bài toán thú vị về tam giác và parabol, từ việc chứng minh tứ giác nội tiếp đến việc xác định tham số để đường thẳng cắt parabol. Hãy tham gia Chương trình luyện thi Đề tuyển sinh môn Toán cùng Sytu để rèn luyện kỹ năng giải toán, chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công trên con đường học tập và nghệ thuật giải toán!
Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 - 2023 sở GD&ĐT Bắc Ninh. Đề thi này dành cho thí sinh muốn thi vào các lớp 10 chuyên Toán và chuyên Tin học. Đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GD&ĐT Bắc Ninh: 1. Cho đường tròn (C) có đường kính AB. Lấy điểm C thuộc đoạn AO (C khác A O). Vẽ đường tròn (I) đường kính BC. Vẽ tiếp tuyến AD và cát tuyến AEF với đường tròn (I) (E nằm giữa A F) sao cho tia AO nằm giữa 2 tia AD AE. Đường thẳng vuông góc với AB từ C cắt đường tròn (O) tại hai điểm gọi một điểm là N sao cho N, D thuộc hai nửa mặt phẳng đối nhau bờ AB. Gọi S là giao điểm của hai đường thẳng DI và NB. R là giao DN và AS. Gọi J là trung điểm SD. a) Chứng minh tam giác AND cân. b) L T lần lượt là tìm đường tròn ngoại tiếp các tam giác SBC và SEF. Chứng minh ba điểm J L T thẳng hàng. 2. Cho hình vuông ABCD có diện tích là S. Tứ giác MNPQ có bốn đỉnh M N P Q thuộc AB BC CD DA và 4 đỉnh này không trùng 4 đỉnh hình vuông. Chứng minh S AC MN NP PQ QM 4. 3. Có 10 bạn học sinh tham gia thi đấu bóng bàn. Hai bạn bất kì đều phải đấu với nhau một trận, bạn nào cũng gặp 9 đối thủ của mình và không có trận nào hòa. Chứng minh rằng luôn xếp được 10 bạn thành 1 hàng dọc sao cho bạn đứng trước thắng bạn đứng kề sau. Đây là một đề thi chuyên sâu, đòi hỏi sự tập trung và logic cao để giải quyết các bài toán. Hy vọng đề thi sẽ giúp các em chuẩn bị tốt cho kì thi tuyển sinh sắp tới. Chúc các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Lắk Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên Toán năm học 2022 – 2023 của sở GD Đào tạo Đắk Lắk. Kỳ thi sẽ diễn ra vào thứ Năm ngày 16 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Lắk: Cho phương trình x² – (2m – 1)x + m² – m – 2 = 0 với m là tham số. Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x₁ và x₂ thỏa mãn x₁³ + x₂³ – 5x₁x₂ = 10m + 15. Cho hình chữ nhật ABCD có chiều dài bằng 47cm, chiều rộng bằng 43cm. Chứng minh rằng trong số 2022 điểm bất kì nằm trong hình chữ nhật ABCD luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 2cm. Cho đường tròn (O; R) và hai điểm P, Q nằm ngoài (O) sao cho góc POQ vuông, PQ không cắt (O). Kẻ hai tiếp tuyến PA, PB với đường tròn (O) (A, B là hai tiếp điểm; tia PA nằm giữa hai tia PQ và PO). Hai cát tuyến PDC, QEC thay đổi của (O) cùng đi qua C (D nằm giữa P và C; E nằm giữa Q và C). Tia PE cắt đường tròn tại điểm thứ hai F (F khác E). H là giao điểm của AB và OP. Chứng minh rằng: 1) Tích PE.PF không đổi. 2) AHE = AHF. 3) Đường tròn ngoại tiếp tam giác PDF luôn đi qua một điểm cố định. Hy vọng rằng đề thi này sẽ giúp các em rèn luyện và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em học tốt!
Đề tuyển sinh không chuyên môn Toán năm 2022 2023 sở GD ĐT Nam Định
Nội dung Đề tuyển sinh không chuyên môn Toán năm 2022 2023 sở GD ĐT Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 không chuyên môn Toán sở GD&ĐT Nam Định năm 2022-2023 Đề thi tuyển sinh lớp 10 không chuyên môn Toán sở GD&ĐT Nam Định năm 2022-2023 Xin chào các thầy cô giáo và các bạn học sinh lớp 9, dưới đây là đề thi chính thức kỳ tuyển sinh vào lớp 10 THPT không chuyên môn Toán cho năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Nam Định. Đề thi bao gồm 08 câu hỏi trắc nghiệm (mỗi câu 02 điểm) và 05 câu hỏi tự luận (mỗi câu 08 điểm), thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Dưới đây là một số câu hỏi mẫu trong đề: 1. Cho tam giác ABC vuông cân tại A có AB = AC = 4cm. Kẻ đường cao AH của tam giác ABC và vẽ cung tròn (A;AH) cắt AB, AC lần lượt tại D, E. Hãy tính diện tích phần tô đậm trong hình vẽ. 2. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm P, Q sao cho P nằm giữa A và Q, dây cung PQ không đi qua tâm O. Chứng minh rằng: a) Năm điểm A, M, O, I, N cùng nằm trên một đường tròn và JIM = JIN. b) Tam giác AMP đồng dạng với tam giác AQM và AP.AQ = AI.AJ. 3. Cho x, y, z là các số thực dương thay đổi. Hãy tìm giá trị lớn nhất của biểu thức P = (x + y – z)(y + z – x)(z + x – y) – xyz. Hy vọng rằng đề thi mẫu này sẽ giúp các bạn luyện tập và chuẩn bị tốt cho kỳ tuyển sinh sắp tới. Chúc các bạn thành công!