Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo học kỳ 1 Toán 9 năm 2022 - 2023 trường Việt Úc - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường Việt Úc, quận 7, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức 100% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề tham khảo học kỳ 1 Toán 9 năm 2022 – 2023 trường Việt Úc – TP HCM : + Siêu thị AEON MALL Bình Tân thực hiện chương trình giảm giá cho khách hàng mua loại nước rửa chén Sunlight trà xanh loại 4,5 lít như sau: Nếu mua 1 can giảm 8.000 đồng so với giá niêm yết. Nếu mua 2 can thì can thứ nhất giảm 8.000 đồng và can thứ hai giảm 15.000 đồng so với giá niêm yết. Nếu mua từ ba can trở lên thì ngoài hai can đầu được hưởng chương trình giảm giá như trên, từ can thứ 3 trở đi mỗi can sẽ được giảm giá 20% so với giá niêm yết. Ông A mua 5 can nước rửa chén Sunlight trà xanh loại 4,5 lít ở Siêu thị AEON MALL Bình Tân thì phải trả bao nhiêu tiền, biết giá niêm yết là 115.000 đồng/can. + Một chiếc cầu trượt bao gồm phần cầu thang (để bước lên) và phần ống trượt (để trượt xuống) nối liền nhau. Biết rằng khi xây dựng phần ống trượt nghiêng với mặt đất một góc là 50. Hãy tính khoảng cách từ chân cầu thang đến chân ống trượt nếu xem phần cầu thang như một đường thẳng dài 2,5 m, ống trượt dài 3 m? + Cho điểm E thuộc nửa đường tròn tâm O đường kính MN. Tiếp tuyến tại N của đường tròn tâm O cắt đường thẳng ME tại D. Kẻ OI vuông góc với ME tại I. a) Chứng minh tam giác MEN vuông tại E. Từ đó chứng minh 2 DE DM DN. b) Chứng minh bốn điểm OIDN cùng thuộc một đường tròn. c) Vẽ đường tròn đường kính OD cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng DA là tiếp tuyến của nửa đường tròn tâm O và DEA DAM.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thạch Thán - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội : + Cho đường thẳng (d) có phương trình y = ax + b. a) Tìm a, b biết đồ thị hàm số đi qua điểm A(0; 2) và điểm B (-2; -4). b) Tìm phương trình đường thẳng (d’) song song với (d), cắt trục hoành tại điểm 3, cắt trục tung tại C. Tính độ dài AC. + Cho tam giác ABC vuông tại A, đường cao AH, AB = 8cm, AC = 15cm. a) Tính BC, AH, HC. b) Chứng minh SinB = CosC c) Gọi P, Q lần lượt là hình chiếu của H trên AB, AC. Kẻ tiếp tuyến CM với đường tròn ngoại tiếp tứ giác APHQ (M thuộc cung nhỏ AQ). Chứng minh CM2 = CQ.CA. d) Tính PA.PB + AQ.QC. + Thực hiện các phép tính sau.
Đề thi HK1 Toán 9 năm 2021 - 2022 trường THCS THPT Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK1 Toán 9 năm 2021 – 2022 trường THCS & THPT Lê Quý Đôn – Hà Nội.
Đề thi cuối học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Bế Văn Đàn - Hà Nội
Đề kiểm tra cuối học kỳ 1 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào sáng thứ Năm ngày 06 tháng 01 năm 2022.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.