Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập tam giác đồng dạng Toán 8 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 144 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề tam giác đồng dạng trong chương trình môn Toán 8 bộ sách Kết Nối Tri Thức Với Cuộc Sống. MỤC LỤC : Chương 9 . TAM GIÁC ĐỒNG DẠNG 1. Bài 33 . HAI TAM GIÁC ĐỒNG DẠNG 1. 1. Các ví dụ 1. + Dạng 1. Chứng minh hai tam giác đồng dạng và tìm tỉ số đồng dạng 1. + Dạng 2. Tính góc, độ dài đoạn thẳng dựa vào hai tam giác đồng dạng 5. 2. Bài tập vận dụng 7. Bài 34 . BA TRƯỜNG HỢP ĐỒNG DẠNG CỦA HAI TAM GIÁC 15. 1. Các ví dụ 15. + Dạng 1. Chứng minh hai tam giác đồng dạng (cạnh – cạnh – cạnh) 15. + Dạng 2. Chứng minh hai tam giác đồng dạng (cạnh – góc – cạnh) 17. + Dạng 3. Chứng minh hai tam giác đồng dạng (góc – góc) 20. + Dạng 4. Vận dụng tam giác đồng dạng để tính góc, độ dài đoạn thẳng 22. + Dạng 5. Chứng minh đẳng thức hình học 25. 2. Bài tập vận dụng 26. LUYỆN TẬP CHUNG 44. 1. Bài tập vận dụng 44. Bài 35 . ĐỊNH LÝ PYTHAGORE VÀ ỨNG DỤNG 56. 1. Các ví dụ 56. + Dạng 1. Tính toán về độ dài và diện tích 56. + Dạng 2. Sử dụng định lí Py-ta-go đảo để nhận biết tam giác 61. + Dạng 3. Chứng minh các tính chất hình học 62. + Dạng 4. Ứng dụng thực tế 65. 2. Bài tập vận dụng 68. Bài 36 . CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA HAI TAM GIÁC VUÔNG 79. 1. Các ví dụ 79. + Dạng 1. Chứng minh hai tam giác vuông đồng dạng 79. + Dạng 2. Tính độ dài đoạn thẳng 82. + Dạng 3. Chứng minh hệ thức hình học 83. + Dạng 4. Tính diện tích đa giác 84. + Dạng 5. Ứng dụng thực tế của tam giác đồng dạng 86. 2. Bài tập vận dụng 88. LUYỆN TẬP CHUNG 101. 1. Bài tập vận dụng 101. ÔN TẬP CHƯƠNG IX 127. 1. Bài tập nâng cao 127. 2. Bài tập vận dụng 134.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. I. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG 1. Nhắc lại về thứ tự trên tập số. 2. Bất đẳng thức. 3. Liên hệ giữa thứ tự và phép cộng. II. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN 1. Liên hệ giữa thứ tự và phép nhân với số lượng. 2. Liên hệ giữa thứ tự và phép nhân số âm. 3. Tính chất bắc cầu của thứ tự.
Chuyên đề giải toán bằng cách lập phương trình
Tài liệu gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề giải toán bằng cách lập phương trình, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Bước 1: Lập phương trình: + Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. + Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. + Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. II. BÀI TẬP MINH HỌA Phương pháp chung: + Bước 1: Kẻ bảng nếu được, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. + Bước 2: Giải thích từng ô trong bảng, lập luận để thiết lập phương trình bậc hai. + Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: + Dạng 1: Toán chuyển động. + Dạng 2: Toán năng suất. + Dạng 3: Toán làm chung công việc. + Dạng 4: Toán có nội dung hình học. + Dạng 5: Dạng toán có chứa tham số. + Dạng 6: Toán về tỉ lệ chia phần. + Dạng 7: Dạng toán liên quan đến số học. + Dạng 8: Dạng toán có nội dung vật lý, hóa học.
Chuyên đề phương trình chứa ẩn ở mẫu
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình chứa ẩn ở mẫu, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ + Bước 1: Tìm điều kiện xác định (viết tắt là ĐKXĐ) của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). + Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được. + Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. II. BÀI TẬP MINH HỌA Vận dụng phương pháp giải phưng trình chứa ẩn ở mẫu, đưa về phương trình bậc nhất đã biết.
Chuyên đề phương trình tích
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình tích, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Phương trình tích (một ẩn) là phương trình có dạng A(x).B(x)…. = 0. Trong đó A(x) và B(x) là các đa thức. Để giải phương trình này ta chỉ cần giải từng phương trình A(x) = 0, B(x) = 0 … rồi lấy tất cả các nghiệm của chúng. Các phương pháp phân tích đa thức thành nhân tử có vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Cách đặt ẩn phụ cũng hay được sử dụng để trình bày cho lời giải gọn gàng hơn. II. BÀI TẬP Vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích đưa phương trình đã cho về các phương trình bậc nhất đã biết cách giải.