Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em tự học và ôn tập hiệu quả. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên: 1. Cho tập con A của tập số tự nhiên, biết A có phần tử nhỏ nhất là 1 và lớn nhất là 100. Mỗi phần tử x thuộc A, x*1 luôn biểu diễn được dưới dạng x = a + b trong đó a, b thuộc A và a có thể bằng b. Hãy tìm tập A có số phần tử nhỏ nhất và giải thích cách tìm? 2. Trong tam giác ABC với AB AC và đường tròn nội tiếp O có trực tâm H. Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi I là trung điểm của BC, P là giao điểm của EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại K. a) Chứng minh PB = PC = PE = PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại Q. Chứng minh tứ giác BIQF nội tiếp. 3. Được cho ba điểm A, B, C phân biệt trên cùng một đường thẳng. Kẻ đường thẳng d vuông góc với AC qua B, D di chuyển trên đường thẳng d sao cho D khác B. Đường tròn ngoại tiếp tam giác ACD cắt d tại E. Gọi P, Q là hình chiếu vuông góc của B lần lượt trên AD và AE. Gọi R là giao điểm của BQ và CD, S là giao điểm của BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di chuyển trên đường thẳng d.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lào Cai
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lào Cai. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lào Cai, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lào Cai : + Cho đường tròn (O), điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MB, MC (B và C là các tiếp điểm) với đường tròn. Trên cung lớn BC lấy điểm A sao cho AB < AC. Từ điểm M kẻ đường thẳng song song với AB, đường thẳng này cắt đường tròn (O) tại D và E (MD < ME), cắt BC tại F, cắt AC tại I. a) Chứng minh tứ giác MBOC nội tiếp. b) Chứng minh FD.FE = FB.FC, FI > FE = FD.FE. c) Đường thẳng OI cắt đường tròn (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt đường tròn (O) tại K (K khác Q). Chứng minh 3 điểm P, K, M thẳng hàng. [ads] + Cho đường thẳng (d): y = x – 1 và parabol (P): y = 3x^2. a) Tìm tọa độ A thuộc parabol (P) biết điểm A có hoành độ x = -1. b) Tìm b để đường thẳng (d) và đường thẳng (d’): y = 1/2.x + b cắt nhau tại một điểm trên trục hoành. + Tìm các giá trị của tham số m để phương trình x^2 – 2(m – 1)x + m^2 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức (x1 – x2)^2 + 6m = x1 – 2×2.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lai Châu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lai Châu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lai Châu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lai Châu, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lai Châu : + Quãng đường AB dài 60km, một người đi xe đạp từ A đến B với vận tốc và thời gian quy định. Sau khi đi được nửa quãng đường người đó giảm vận tốc 5km/h trên nửa quãng đường còn lại. Vì vậy, người đó đã đến B chậm hơn quy định 1 giờ. Tính vận tốc và thời gian quy định của người đó. [ads] + Giải phương trình và hệ phương trình sau: a) x^2 – 6x + 5 = 0. b) x + y = 2 và 2x – y = 1. + Cho phương trình: 2x^2 + (2m – 1)x + m – 1 = 0 trong đó m là tham số. a) Giải phương trình khi m = 2 . b) Tìm m để phương trình có hai ngiệm thỏa mãn: 4×1^2 + 4×2^2 + 2x1x2 = 1.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lâm Đồng
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lâm Đồng. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng : + Trong lễ phát động phong trào trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ, lớp 9A được giao trồng 360 cây. Khi thực hiện có 4 bạn được điều đi làm việc khác, nên mỗi học sinh còn lại phải trồng thêm một cây so với dự định. Hỏi lớp 9A có bao nhiêu học sinh? (Biết số cây trồng của mỗi học sinh như nhau). [ads] + Từ điểm A nằm ngoài đường tròn (O), vẽ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD không đi qua tâm O (C nằm giữa A và D). Gọi E là trung điểm của CD. Chứng minh rằng ABOE là tứ giác nội tiếp. + Cho △ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB). Tia FE cắt đường tròn tại M. Chứng minh AM^2 = AH.AD.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lạng Sơn
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lạng Sơn tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lạng Sơn. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lạng Sơn, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lạng Sơn : + Cho phương trình: x^2 + (m + 2)x + m – 1 = 0 (m là tham số). Chứng minh rằng phương trình luôn có nghiệm với mọi m. Khi đó tìm m để biểu thức A = x1^2 + x2^2 – 3x1x2 đạt giá trị nhỏ nhất. [ads] + Vẽ đồ thị (P) của hàm số y = 1/2.x^2. Tìm giao điểm của đồ thị hàm số (P) với đường thẳng (d): y = x. + Cho ba số thực không âm a, b, c và thỏa mãn a + b + c = 1. Chứng minh rằng: a + 2b + c ≥ 4(1 – a)(1 – b)(1 – c).