Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thử sức trước kỳ thi THPTQG 2019 môn Toán Toán Học Tuổi Trẻ (Đề số 6)

Ngày 15 tháng 05 năm 2019, tạp chí Toán học Tuổi trẻ (THTT) xuất bản số báo THTT – 503 (5 – 2019), và trong số báo lần này, giới thiệu đến quý thầy, cô giáo cùng các em học sinh nội dung đề thử sức trước kỳ thi THPTQG 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 6). Đề thử sức trước kỳ thi THPTQG 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 6) được biên soạn bởi thầy Đặng Thanh Hải, giáo viên Toán trường THPT Triệu Quang Phục, tỉnh Hưng Yên, đề gồm 04 trang với 50 câu trắc nghiệm, cấu trúc đề tương tự với đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, đáp án và lời giải chi tiết của đề thi này sẽ được cập nhật khi số báo Toán Học Tuổi Trẻ tiếp theo được phát hành (THTT – 504 (6 – 2019)). Trích dẫn đề thử sức trước kỳ thi THPTQG 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 6) : + Cho mệnh đề “Có một học sinh trong lớp 12A không chấp hành luật giao thông”. Mệnh đề phủ định của mệnh đề này là? A. Không có học sinh nào trong lớp 12A chấp hành luật giao thông. B. Mọi học sinh trong lớp 12A đều chấp hành luật giao thông. C. Có một học sinh trong lớp 12A chấp hành luật giao thông. D. Mọi học sinh trong lớp 12A không chấp hành luật giao thông. [ads] + Người ta phỏng vấn 100 người về ba bộ phim A, B, C đang chiếu thì thu được kết quả như sau: Bộ phim A: có 28 người đã xem. Bộ phim B: có 26 người đã xem. Bộ phim C: có 14 người đã xem. Có 8 người đã xem hai bộ phim A và B. Có 4 người đã xem hai bộ phim B và C. Có 3 người đã xem hai bộ phim A và C. Có 2 người đã xem cả ba bộ phim A, B và C. Số người không xem bất cứ phim nào trong cả ba bộ phim A, B, C là? + Có 13 tấm thẻ phân biệt trong đó có một tấm thẻ ghi chữ ĐỖ, một tấm thẻ ghi chữ ĐẠI, một tấm thẻ ghi chữ HỌC và mười tấm thẻ đánh số từ 0 đến 9. Lấy ngẫu nhiên từ đó ra 7 tấm thẻ. Tính xác suất để rút được 7 tấm thẻ theo thứ tự: ĐỖ, ĐẠI, HỌC, 2, 0, 1, 9.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Thủ Đức - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT Thủ Đức, thành phố Hồ Chí Minh (mã đề 546). Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Thủ Đức – TP HCM : + Cho hình nón có chiều cao bằng 2 5. Cắt hình nón đã cho bởi mặt phẳng đi qua đỉnh, thiết diện thu được là tam giác đều có diện tích bằng 9 3. Thể tích của khối nón đã cho bằng? + Ở một ngã tư, một đèn giao thông sẽ đỏ trong vòng 40 giây. Ngẫu nhiên bạn đến trong lúc đèn đang đỏ. Tính xác suất để khi bạn đợi nhiều nhất 15s thì bạn sẽ thấy đèn xanh? + Trong không gian với hệ tọa độ Oxyz cho bốn điểm A 2 3 5 B 1 3 2 C 2 1 3 D 5 7 4. Điểm M a b c di động trên mặt phẳng Oxy. Khi biểu thức 2 2 2 2 T MA MB MC MD 4 5 6 đạt giá trị nhỏ nhất thì tổng a b c bằng?
Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Lao Bảo - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT Lao Bảo, tỉnh Quảng Trị; đề thi có đáp án mã đề 001 002 003 004. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Lao Bảo – Quảng Trị : + Cho đồ thị hàm số bậc ba 3 2 y f x ax bx cx d và đường thẳng d y mx n như hình vẽ và 1 2 S S là diện tích hình phẳng được tô đậm trong hình bên. Biết 1 2 S p S q với p q và p q là phân số tối giản. Khi đó p q 2022 bằng? + Trong không gian Oxyz cho điểm E 2 1 3 mặt phẳng P x y z 2 2 3 0 và mặt cầu 2 2 2 S x y z 3 2 5 36. Gọi là đường thẳng đi qua E nằm trong P và cắt S tại hai điểm có khoảng cách nhỏ nhất. Biết có một vec-tơ chỉ phương u y z 2018 0 0. Tính 0 0 T z y. + Cho hàm số y f x có đạo hàm là 2 f x x x x 2 3. Biết F x là nguyên hàm của hàm số f x và tiếp tuyến của F x tại điểm M 0 2 có hệ số góc bằng 0. Khi đó F 1 bằng?
Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Cổ Loa - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT Cổ Loa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Cổ Loa – Hà Nội : + Trong không gian Oxyz cho hai điểm A(2;3;3) và B(-2;-1;1). Gọi (1S) và (2S) lần lượt là hai mặt cầu thay đổi nhưng luôn tiếp xúc với đường thẳng AB lần lượt tại A và B đồng thời tiếp xúc ngoài với nhau tại điểm M. Khi đó khoảng cách từ điểm M đến mặt phẳng P x y z 2 2 8 0 đạt giá trị lớn nhất bằng bao nhiêu? + Cho hàm số 3 2 f x x bx cx d b c d có đồ thị C. Gọi g x là hàm số bậc nhất có đồ thị là đường thẳng cắt đồ thị C tại ba điểm A B C sao cho BA BC 2. Gọi 1 2 S S lần lượt là diện tích các hình phẳng được tô đậm trong hình vẽ. Biết 1 8 3 S tính 2 S. + Một công ty cần tuyển 3 nhân viên mới. Có 4 nam và 3 nữ nộp đơn dự tuyển. Giả sử khả năng trúng tuyển của mỗi người là như nhau. Xác suất để trong 3 người được tuyển có 1 nam và 2 nữ bằng?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bắc Giang (mã đề 111); kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở GD&ĐT Bắc Giang : + Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 25 và hình nón (n) có đỉnh A(3;2;-2) và nhận AI làm trục đối xứng với I là tâm mặt cầu. Một đường sinh của hình nón (n) cắt mặt cầu tại M, N sao cho AM = 3AN. Mặt cầu đồng tâm với mặt cầu (S) và tiếp xúc với các đường sinh của hình nón (n) có bán kính bằng? + Trong không gian với hệ toạ độ Oxyz, cho điểm M(a;b;c) với a, b, c là ba số thực dương thoả mãn điều kiện 5(a2 + b2 + c2) = 6(ab + bc + ca) và biểu thức P đạt giá trị lớn nhất. Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm M trên các trục Ox, Oy và Oz. Phương trình mặt phẳng (ABC) là? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x + 1)2 + (y + 4)2 + (z – 3)2 = 6 và điểm M(1;-2;4). Xét điểm N thuộc mặt cầu (S) sao cho đường thẳng MN tiếp xúc với mặt cầu (S). Khi đó điểm N luôn nằm trên mặt phẳng có phương trình?