Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Đăng Đạo Bắc Ninh

Nội dung Đề khảo sát lần 1 lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Đăng Đạo Bắc Ninh Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 THCS Nguyễn Đăng Đạo Bắc Ninh Đề khảo sát môn Toán lớp 9 THCS Nguyễn Đăng Đạo Bắc Ninh Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, chúng ta có cơ hội tham gia vào đề khảo sát chất lượng lần 1 môn Toán cho năm học 2022-2023 tại trường THCS Nguyễn Đăng Đạo, tỉnh Bắc Ninh. Đề thi sẽ diễn ra vào ngày 30 tháng 11 năm 2022. Dưới đây là một số câu hỏi mà các em sẽ phải hoàn thành: Cho các khẳng định sau: (1) Qua ba điểm phân biệt chỉ vẽ được một đường tròn duy nhất. (2) Có vô số đường tròn đi qua hai điểm phân biệt. (3) Tâm đường tròn ngoại tiếp tam giác nằm ở trung điểm của cạnh lớn nhất. (4) Trong một đường tròn, đường kính đi qua trung điểm của dây thì vuông góc với dây ấy. Số khẳng định đúng? Cho hàm số y = (m − 1)x + 2 − m (với m là tham số). a) Vẽ đồ thị hàm số khi m = 3. b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 5. c) Chứng minh rằng khoảng cách từ gốc tọa độ O đến đồ thị hàm số không vượt quá 2. Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất. Hy vọng rằng bài kiểm tra sẽ giúp các em nắm vững kiến thức và kỹ năng cần thiết trong môn Toán. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán 9 cuối năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 cuối năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn đề KSCL Toán 9 cuối năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho phương trình: x2 – 4x + m + 5 = 0 (1) a) Tìm giá trị tham số m để phương trình (1) có nghiệm b) Tìm giá trị tham số m để phương trình (1) có hai nghiệm dương x2 và x2 thỏa mãn. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Để chuẩn bị cho SEA Games 31 diễn ra từ ngày 12/5/2022 đến 23/5/2022 tại Việt Nam, Ban tổ chức tuyển chọn được 3000 tình nguyện viên (TNV) cả nam và nữ đáp ứng trình độ tiếng Anh B1. Nếu tăng yêu cầu tiếng Anh lên trình độ B2 thì số TNV nam giảm 20%, nữ giảm 10% và do đó tổng số TNV chỉ còn 2580 người. Hỏi Ban tổ chức đã tuyển chọn được bao nhiêu tình nguyện viên nam, bao nhiêu TNV nữ theo tiêu chuẩn ban đầu? + Từ điểm A bên ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC và cát tuyết AEF (B và C là tiếp điểm, tia AF nằm giữa hai tia AB và AO, E nằm giữa A và F). Gọi I là giao điểm của AO và BC, K là trung điểm của EF a) Chứng minh tứ giác ABOC nội tiếp b) Biết OB = 3cm, BOC = 120. Tính độ dài cung tròn BEC c) Đường thẳng đi qua K song song với BF cắt BC ở M. Chứng minh rằng KMC = KEC d) Tia FM cắt AB tại N. Chứng minh N là trung điểm của AB.
Đề KSCL Toán 9 lần 1 năm 2021 - 2022 phòng GDĐT Mê Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh lớp 9 môn Toán lần 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Trích dẫn đề KSCL Toán 9 lần 1 năm 2021 – 2022 phòng GD&ĐT Mê Linh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi I chảy trong 4 giờ rồi khóa lại và mở tiếp vòi II chảy trong 3 giờ thì được 3/10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể? + Tính diện tích tường nhà cần phải quét vôi của một căn phòng hình hộp chữ nhật có chiều dài 5 m, chiều rộng 4 m, chiều cao 4 m; biết diện tích để làm cửa đi và cửa sổ chiếm 20% diện tích tường. + Cho phương trình m2x – 2(m + 1)x + 1 = 0 (*) với m là tham số. a) Tìm giá trị của m để phương trình (*) có nghiệm bằng 2 b) Tìm giá trị nguyên nhỏ nhất của m để phương trình (*) có hai nghiệm phân biệt.
Đề KSCL Toán 9 năm 2021 - 2022 phòng GDĐT Phú Xuyên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội. Trích dẫn đề KSCL Toán 9 năm 2021 – 2022 phòng GD&ĐT Phú Xuyên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ôtô khách và một ô tô tải cùng xuất phát từ địa điểm A đi đến địa điểm B đường dài 180 km, do vận tốc của ô tô khách lớn hơn ô tô tải 10 km/h nên ô tô khách đến B trước ô tô tải 36 phút. Tính vận tốc của mỗi ô tô (Biết rằng trong quá trình đi từ A đến B vận tốc của mỗi ô tô không đổi). + Một bể nước có dạng hình hộp chữ nhật có chiều cao 2 m, diện tích đáy là 4,5 m2. Hỏi bể nước đó đựng đầy được bao nhiêu m3 nước? (bỏ qua bề dày của bể nước). + Cho các hàm số: y = x2 (P) và y = 3x + m2 (d) (x là biến số, m là tham số cho trước) a. Chứng minh rằng với bất kỳ giá trị nào của m, đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt. b. Gọi y1 và y2 là tung độ các giao điểm của đường thẳng (d) và parabol (P). Tìm m để có đẳng thức: y1 + y2 = 11.
Đề KSCL Toán 9 năm 2020 - 2021 trường THCS Nguyễn Tri Phương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 9 năm học 2020 – 2021 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Do dịch CoVid-19 bùng phát trở lại nên theo kế hoạch hai tổ sản xuất dự định làm 1000 hộp khẩu trang để cung cấp cho tâm dịch Bắc Giang. Nhưng khi thực hiện tổ một làm vượt mức kế hoạch 15%, tổ hai làm vượt mức kế hoạch 20% nên cả hai tổ làm được 1170 hộp khẩu trang. Tính số hộp khẩu trang mà mỗi tổ phải làm theo kế hoạch. + Cho phương trình: x2 + 2mx + 2m – 1 = 0 (tham số m). a) Giải phương trình khi m = -3. b) Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 ≤ 0 < x2. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác BFEC nội tiếp. 2) Tia AO cắt đường tròn (O) tại K. Chứng minh AB. AC = AK. AD. 3) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng. Cho BC cố định, A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, chứng minh diện tích hình tròn ngoại tiếp tam giác AEF không đổi.