Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào 10 chuyên môn Toán chuyên năm 2014 2015 sở GD ĐT Đồng Tháp

Nội dung Đề tuyển sinh vào 10 chuyên môn Toán chuyên năm 2014 2015 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm 2014 - 2015 sở Giáo dục Đồng Tháp Đề tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm 2014 - 2015 sở Giáo dục Đồng Tháp Sytu trân trọng giới thiệu đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm học 2014 - 2015 của sở Giáo dục và Đào tạo tỉnh Đồng Tháp. Kỳ thi sẽ được diễn ra vào ngày 10 tháng 06 năm 2014, với đề thi được cung cấp đầy đủ đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi được thiết kế để kiểm tra kiến thức, kỹ năng và khả năng giải quyết vấn đề của học sinh trong lĩnh vực Toán học. Qua đó, giúp các em chuẩn bị tốt nhất cho kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán chuyên, đồng thời nắm vững những kiến thức cơ bản và nâng cao kỹ năng giải bài toán. Hy vọng đề thi sẽ là cầu nối giúp các em học sinh chinh phục thành công kỳ thi tuyển sinh cũng như phát triển bản thân trong lĩnh vực Toán học. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hạ Long - Quảng Ninh
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh dành cho thí sinh thi vào các lớp 10 chuyên Toán; đề gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút; kỳ thi diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh : + Cho x, y là hai số thực thỏa mãn x2 + 5y2 + 4xy + 3x + 4y = 27. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức M = x + 2y. + Từ một điểm A ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC và cát tuyến ADE với đường tròn (B, C là các tiếp điểm, AD < AE, DB < DC). Qua điểm O kẻ đường thẳng vuông góc với DE tại H, đường thẳng này cắt đường thẳng BC tại K. Chứng minh: 1. Tứ giác BCOH nộp tiếp. 2. KD là tiếp tuyến của đường tròn (O). 3. DBC = HBC. + Tìm tất cả các cặp số nguyên dương (a; b) sao cho ab(a + b)/(ab + 2) là số nguyên.
Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Cho Parabal có phương trình: y = 3×2 (P) và đường thẳng có phương trình y = 6x + 2m − 1 (d). Tìm m để parabal (P) cắt đường thẳng (d) tại hai điểm phân biệt. + Cho phương trình: x2 − 6x + 2m + 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x31 + x32 < 72. + Cho (O; R) và điểm A nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). I là một điểm thuộc đoạn BC (IB < IC). Kẻ đường thẳng d vuông góc với OI tại I. Đường thẳng d cắt đường thẳng AB, AC lần lượt E và F. 1. Chứng minh tứ giác OIBE và tứ giác OIF C là các tứ giác nội tiếp. 2. Chứng minh I là trung điểm của EF. 3. Qua O kẻ đường thẳng vuông góc với OA cắt đường thẳng AB, AC lần lượt tại P và Q. Tìm vị trí của A để diện tích tam giác AP Q nhỏ nhất.
Đề thi vào 10 môn Toán (chung) năm 2020 - 2021 trường chuyên Lê Quý Đôn - Lai Châu
Đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Một ô tô khách dự tính đi từ thành phố Lai Châu đến huyện Nậm Nhùn trong một thời gian đã định. Sau khi đi được 1 giờ thì ô tô này dừng lại nghỉ 10 phút. Do đó để đến Nậm Nhùn đúng hạn xe phải tăng tốc thêm 6 km/h. Tính vận tốc ban đầu của ô tô biết rằng quãng đường từ thành phố Lai Châu đi huyện Nậm Nhùn dài 120 km. + Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm tới đường tròn đó (B,C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC. 1. Chứng minh tứ giác ABOC là tứ giác nội tiếp. 2. Chứng minh AH.AO = AD.AE. 3. Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q. Chứng minh rằng: IP + KQ ≥ PQ. + Cho a, b là các số không âm thỏa mãn a2 + b2 ≤ 2, hãy tìm giá trị lớn nhất của biểu thức: M = a√3b(a + 2b) + b√3a(b + 2a).
Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hùng Vương - Phú Thọ
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ : + Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Gọi P là điểm nằm trên đường tròn ngoại tiếp tam giác HBC và nằm trong tam giác ABC (P khác B, C, H). Gọi M là giao điểm của đường thẳng PB với đường tròn (O) (M khác B); N là giao điểm của đường thẳng PC với (O) (N khác C). Đường thẳng BM cắt AC tại E, đường thẳng CN cắt AB tại F. Đường tròn ngoại tiếp tam giác AME và đường tròn ngoại tiếp tam giác ANF cắt nhau tại Q (Q khác A). 1. Chứng minh tứ giác AEPF nội tiếp. 2. Chứng minh M, N, Q thẳng hàng. 3. Trong trường hợp AP là phân giác của MAN, chứng minh PQ đi qua trung điểm của đoạn thẳng BC. [ads] + Cho phương trình x2 + mx + n = 0 trong đó m2 + n2 = 2020. Chứng minh nếu phương trình có nghiệm x0 thì |x0| < √2021. + Cho dãy số gồm 4041 số chính phương liên tiếp, trong đó tổng của 2021 số đầu bằng tổng của 2020 số cuối. Tìm số hạng thứ 2021 của dãy số đó.