Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia môn Toán năm 2019 sở GDĐT Cà Mau

Ngày 13 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019, kỳ thi nhằm kiểm tra kiến thức môn Toán của học sinh lớp 12 trong quá trình các em ôn tập chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán sắp tới, kỳ thi cũng là dịp để các em tự kiểm nghiệm lại kiến thức của bản thân, tiếp xúc với các dạng toán nâng cao, từ đó có một sự chuẩn bị thật tốt trong một tháng tới. Đề thi thử THPT Quốc gia môn Toán năm 2019 sở GD&ĐT Cà Mau có mã đề 101, đề gồm 7 trang được biên soạn theo dạng đề trắc nghiệm, đề gồm 50 câu hỏi và bài toán, thời gian học sinh làm bài 90 phút. [ads] Trích dẫn đề thi thử THPT Quốc gia môn Toán năm 2019 sở GD&ĐT Cà Mau : + Ông A đến tiệm điện máy để mua ti vi với giá niêm yết 17.000.000 đồng, ông trả trước 30% số tiền. Số tiền còn lại ông trả góp trong 6 tháng, lãi suất 2,5%/tháng theo cách: Sau đúng một tháng kể từ ngày mua, ông bắt đầu trả góp; hai lần liên tiếp cách nhau đúng một tháng, số tiền trả góp ở mỗi tháng là như nhau. Biết rằng mỗi tháng tiệm điện máy chỉ tính lãi trên số dư nợ thực tế của tháng đó. Nếu mua theo hình thức trả góp như trên thì số tiền ông A phải trả nhiều hơn số giá niêm yết gần nhất với số tiền nào dưới đây? + Một cái hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi có kích thước như nhau; n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong 3 viên bi lấy được có đủ 3 màu là 9/28. Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. + Người ta muốn xây một cái bể hình hộp đứng có thể tích V = 18 (m3), biết đáy bể là hình chữ nhật có chiều dài gấp 3 lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Lao Bảo - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT Lao Bảo, tỉnh Quảng Trị; đề thi có đáp án mã đề 001 002 003 004. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Lao Bảo – Quảng Trị : + Cho đồ thị hàm số bậc ba 3 2 y f x ax bx cx d và đường thẳng d y mx n như hình vẽ và 1 2 S S là diện tích hình phẳng được tô đậm trong hình bên. Biết 1 2 S p S q với p q và p q là phân số tối giản. Khi đó p q 2022 bằng? + Trong không gian Oxyz cho điểm E 2 1 3 mặt phẳng P x y z 2 2 3 0 và mặt cầu 2 2 2 S x y z 3 2 5 36. Gọi là đường thẳng đi qua E nằm trong P và cắt S tại hai điểm có khoảng cách nhỏ nhất. Biết có một vec-tơ chỉ phương u y z 2018 0 0. Tính 0 0 T z y. + Cho hàm số y f x có đạo hàm là 2 f x x x x 2 3. Biết F x là nguyên hàm của hàm số f x và tiếp tuyến của F x tại điểm M 0 2 có hệ số góc bằng 0. Khi đó F 1 bằng?
Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Cổ Loa - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT Cổ Loa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Cổ Loa – Hà Nội : + Trong không gian Oxyz cho hai điểm A(2;3;3) và B(-2;-1;1). Gọi (1S) và (2S) lần lượt là hai mặt cầu thay đổi nhưng luôn tiếp xúc với đường thẳng AB lần lượt tại A và B đồng thời tiếp xúc ngoài với nhau tại điểm M. Khi đó khoảng cách từ điểm M đến mặt phẳng P x y z 2 2 8 0 đạt giá trị lớn nhất bằng bao nhiêu? + Cho hàm số 3 2 f x x bx cx d b c d có đồ thị C. Gọi g x là hàm số bậc nhất có đồ thị là đường thẳng cắt đồ thị C tại ba điểm A B C sao cho BA BC 2. Gọi 1 2 S S lần lượt là diện tích các hình phẳng được tô đậm trong hình vẽ. Biết 1 8 3 S tính 2 S. + Một công ty cần tuyển 3 nhân viên mới. Có 4 nam và 3 nữ nộp đơn dự tuyển. Giả sử khả năng trúng tuyển của mỗi người là như nhau. Xác suất để trong 3 người được tuyển có 1 nam và 2 nữ bằng?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bắc Giang (mã đề 111); kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở GD&ĐT Bắc Giang : + Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 25 và hình nón (n) có đỉnh A(3;2;-2) và nhận AI làm trục đối xứng với I là tâm mặt cầu. Một đường sinh của hình nón (n) cắt mặt cầu tại M, N sao cho AM = 3AN. Mặt cầu đồng tâm với mặt cầu (S) và tiếp xúc với các đường sinh của hình nón (n) có bán kính bằng? + Trong không gian với hệ toạ độ Oxyz, cho điểm M(a;b;c) với a, b, c là ba số thực dương thoả mãn điều kiện 5(a2 + b2 + c2) = 6(ab + bc + ca) và biểu thức P đạt giá trị lớn nhất. Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm M trên các trục Ox, Oy và Oz. Phương trình mặt phẳng (ABC) là? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x + 1)2 + (y + 4)2 + (z – 3)2 = 6 và điểm M(1;-2;4). Xét điểm N thuộc mặt cầu (S) sao cho đường thẳng MN tiếp xúc với mặt cầu (S). Khi đó điểm N luôn nằm trên mặt phẳng có phương trình?
Đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 2 trường THPT Thị xã Quảng Trị; đề thi có đáp án mã đề 001 – 002 – 003 – 004. Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT Thị xã Quảng Trị : + Cho hai hàm số y f x và y g x biết rằng hàm số 3 2 f x ax bx cx d và 2 g x qx nx p với a q 0 có đồ thị như hình vẽ và diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f x và g x bằng 10 và f g 3 3 45 0. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y f x và y g x bằng a b (với a b là phân số tối giản). Tính P a b. + Cho một hình nón đỉnh S có đáy là đường tròn O, bán kính R 5 và góc ở đỉnh bằng 2 với 2 sin 3. Mặt phẳng P vuông góc với SO tại H và cắt hình nón theo đường tròn tâm H. Gọi V là thể tích khối nón đỉnh O và đáy là đường tròn tâm H. Biết V đạt giá trị lớn nhất khi b SH a với a b N và b a là phân số tối giản. Tính giá trị của biểu thức 2 2 T a b 2. + Tại môn bóng đá nam SEA Games 31 tổ chức tại Việt Nam có 10 đội bóng tham dự trong đó có 2 đội tuyển Việt Nam và Thái Lan. Ban tổ chức chia ngẫu nhiên 10 đội tuyển thành 2 bảng: bảng A và bảng B, mỗi bảng có 5 đội. Xác suất để đội tuyển Việt Nam và đội tuyển Thái Lan nằm cùng một bảng đấu là?