Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic dành cho học sinh môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Nhà máy dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140 kg chất A và 18 kg chất B. Với mỗi tấn nguyên liệu loại I, nhà máy chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, nhà máy chiết xuất được 10 kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 8 triệu đồng và loại II là 6 triệu đồng. Hỏi nhà máy phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A có phương trình đường thẳng chứa cạnh AB là x y 2 2 0 phương trình đường thẳng chứa cạnh AC là 2 1 0 x y biết điểm M 12 thuộc đoạn thẳng BC. Tìm tọa độ điểm D sao cho DB DC có giá trị nhỏ nhất. + Xét các số thực x y z thỏa mãn đồng thời 0 1 x y z và 3 2 4 x y z tìm giá trị lớn nhất của biểu thức 2 S x y z 3 2.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 10 lần 1 năm 2020 - 2021 trường THPT chuyên KHTN - Hà Nội
Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 10 năm học 2020 – 2021 lần thứ nhất. Đề thi chọn HSG Toán 10 lần 1 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề thi chọn HSG Toán 10 lần 1 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). P là một điểm nằm trong tam giác sao cho PB = PC. Lấy điểm Q trên đường tròn ngoại tiếp tam giác PBC và nằm trong tam giác sao cho PQA + OAP = 90 độ. Gọi M là trung điểm của BC. Điểm K thuộc cạnh BC sao cho KAB = MAC. Chứng minh rằng QK vuông góc QP. + Tìm tất cả các số nguyên dương n sao cho tất cả các ước nguyên dương (phân biệt) của n có thể sắp xếp thành một bảng hình chữ nhật (mỗi vị trí chứa đúng một số) mà tổng các số trên mỗi hàng bằng nhau; tổng các số trên mỗi cột bằng nhau. + Tìm tất cả các bộ ba số (x, y, p) nguyên dương, với p là số nguyên tố thỏa mãn: x^2 – 3xy + p^2.y^2 = 12y.
Đề thi Olympic Toán 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán 10 năm học 2019 – 2020 cụm Sóc Sơn – Mê Linh – Hà Nội; đề thi gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 10 năm học 2019 – 2020 cụm Sóc Sơn – Mê Linh – Hà Nội : + Một người có một khu đất bãi rộng dọc theo bờ sông. Người đó muốn làm một hàng rào hình chữa E (như hình vẽ) để được khu đất hình chữ nhật gồm hai phần để trồng rau và chăn nuôi. Đối với mặt hàng rào song song với bờ sông thì chi phí nguyên vật liệu là 80000 đồng một mét dài, đối với phần còn lại thì chi phí nguyên vật liệu là 40000 đồng một mét dài. Tính diện tích lớn nhất của phần đất mà người đó rào được với chi phí vật liệu 20 triệu đồng. [ads] + Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD vuông tại A và D(2;2), cạnh CD = 2AB. Gọi H là hình chiếu của D lên cạnh AC và M là trung điểm HC. Biết phương trình đường thẳng DH và BM lần lượt là 2x + y – 6 = 0 và 4x + 7y – 61 = 0. Tìm tọa độ các đỉnh A, B, C của hình thang. + Cho tam giác ABC. O là điểm tùy ý trong tam giác. Gọi M, N, P lần lượt là hình chiếu của O lên cạnh BC, AC, AB. Chứng minh rằng BC/OM + AC/ON + AB/OP ≥ 2p/r, trong đó p là nửa chu vi và r là bán kính đường tròn nội tiếp tam giác ABC.
Đề thi chọn HSG Toán 10 năm học 2019 - 2020 trường THPT thị xã Quảng Trị
Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 10 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 10 năm học 2019 – 2020 trường THPT thị xã Quảng Trị gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 10 năm học 2019 – 2020 trường THPT thị xã Quảng Trị : + Cho tam giác ABC có chu vi bằng 20, góc BAC = 60 độ, bán kính đường tròn nội tiếp tam giác bằng 3. Gọi A1, B1, C1 là hình chiếu vuông góc của A, B, C lên BC, CA, AB và M là điểm nằm trong tam giác ABC thỏa mãn ABM = BCM = CAM = φ. Tính cot φ và bán kính đường tròn ngoại tiếp tam giác A1B1C1. + Cho tam giác ABC có trọng tâm G và điểm E thỏa mãn BE + 3EC = 0. Gọi I là giao điểm của AC và GE, tính tỉ số IA/IC. + Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết phương trình đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2;1). Tìm tọa độ các đỉnh của hình chữ nhật ABCD.
Đề thi chọn HSG Toán 10 năm 2019 - 2020 trường THPT Trần Phú - Hà Tĩnh
Nhằm tuyển chọn các em học sinh khối lớp 10 có thành tích học tập môn Toán xuất sắc vào đội tuyển học sinh giỏi Toán 10 của nhà trường, vừa qua, trường THPT Trần Phú – Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi Toán 10 cấp trường năm học 2019 – 2020. Đề thi chọn HSG Toán 10 năm 2019 – 2020 trường THPT Trần Phú – Hà Tĩnh được biên soạn theo hình thức tự luận, đề gồm có 01 trang với 05 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi chọn HSG Toán 10 năm 2019 – 2020 trường THPT Trần Phú – Hà Tĩnh : + Cho hàm số y = (m – 2)x^2 – 2(m – 1)x + m + 2 (m là tham số). a) Biết đồ thị là một đường parabol có tung độ đỉnh bằng 3m. Xác định giá trị của m . b) Tìm m để hàm số nghịch biến trên khoảng (-∞;2). + Trong hệ tọa độ Oxy, cho hình thang ABCD có hai cạnh bên AB và CD cắt nhau tại điểm M, tọa độ điểm A(-2;-2), B(0;4) và C(7;3). a) Tìm tọa độ điểm E để EA + EB + 2EC = 0 và tìm giá trị nhỏ nhất của |PA + PB [ads] + 2PC| biết P là điểm di động trên trục hoành. b) Biết diện tích hình thang ABCD gấp 3 lần diện tích tam giác MBC. Tìm tọa độ đỉnh D. + Cho tam giác ABC đều cạnh 3a. Lấy các điểm M, N lần lượt trên các cạnh BC, CA sao cho BM = a, CN = 2a. a. Tìm giá trị của tích vô hướng AM.BC theo a. b. Gọi P là điểm nằm trên cạnh AB sao cho AM vuông góc với PN. Tính độ dài PN theo a.