Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 10 thi TN THPT 2024 lần 1 trường THPT Ba Đình - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán 10 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán 10 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Văn, 11 học sinh giỏi Anh, trong đó có 6 học sinh giỏi cả Toán và Văn, 5 học sinh giỏi cả Anh và Văn, 4 học sinh giỏi cả Toán và Anh, 3 học sinh giỏi cả ba môn Toán, Văn và Anh. Tính số học sinh giỏi đúng một trong hai môn Toán hoặc Văn. + Người ta dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140kg chất A và 18kg chất B. Với mỗi tấn nguyên liệu loại I, người ta chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, người ta chiết xuất được10kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 9 triệu đồng và loại II là 7 triệu đồng. Tính chi phí ít nhất dùng để mua nguyên liệu mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Để đo chiều cao của một cây lớn, một bạn từ vị trí H trên ban công của một toà nhà, có độ cao so với mặt đất 12m, bạn đó dùng dụng cụ đo góc quan sát được cây AB dưới góc AHB = 50. Biết khoảng cách từ chân tường nhà đến gốc cây là KA m 50, tính chiều cao của cây (làm tròn đến hàng đơn vị).

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 10 lần 1 năm 2020 - 2021 trường THPT Đội Cấn - Vĩnh Phúc
Ngày … tháng 11 năm 2020, trường THPT Đội Cấn, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán 10 lần 1 năm học 2020 – 2021. Đề khảo sát chất lượng Toán 10 lần 1 năm 2020 – 2021 trường THPT Đội Cấn – Vĩnh Phúc mã đề 135 gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 10 lần 1 năm 2020 – 2021 trường THPT Đội Cấn – Vĩnh Phúc : + Lớp 10A có 45 học sinh. Qua khảo sát về sở thích các môn thể thao được biết có 13 học sinh thích đá cầu, 14 học sinh thích bóng chuyền, 15 học sinh thích đá bóng. Có 9 em thích cả đá bóng và đá cầu, 8 em thích cả đá cầu và bóng chuyền, 5 em chỉ thích bóng đá nhưng không thích bóng chuyền. Hỏi lớp có bao nhiêu học sinh không thích cả ba môn nói trên biết có 6 bạn thích cả ba môn thể thao nói trên. + Cho tam giác ABC có trọng tâm là G. I là trung điểm của BC. M, N lần lượt là các điểm được xác định bởi CN = 1/2.BC, 3MA + 4MB = 0. P là giao của AC và MN. Tính tỉ số diện tích của tam giác ANP và NCP. + Trong các câu sau có bao nhiêu câu là mệnh đề? (1) Trời mưa to quá! (2) Bạn có đói không? (3) Con voi to hơn con khỉ. (4) 2^2 > 1^2.
Đề ĐGCB học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT chuyên KHTN - Hà Nội
Thứ Hai ngày 19 tháng 10 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi đánh giá công bằng học kỳ 1 môn Toán 10 năm học 2020 – 2021. Đề ĐGCB học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề ĐGCB học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Xét đa giác đều 105 đỉnh, hỏi có bao nhiêu đa giác đều có đỉnh là đỉnh đa giác đã cho? + Xác định số cách chọn bộ 5 số từ tập 18 số nguyên dương đầu tiên sao cho 2 số bất kỳ trong 5 số được chọn có hiệu số giữa số lớn và số bé lớn hơn hoặc bằng 2. + Cho tập A = {0; 1; 2; 3; 4; 5}. Có bao nhiêu số gồm 5 chữ số của A mà mỗi số có đúng 3 chữ số giống nhau?
Đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 - 2021 trường chuyên Lê Quý Đôn - BR VT
Đề kiểm tra kiến thức lớp chuyên Toán 10 năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 – 2021 trường chuyên Lê Quý Đôn – BR VT : + Cho đường tròn (O) và dây cung BC cố định không phải là đường kính. Gọi M là trung điểm của đoạn thẳng BC. Một điểm H thay đổi trên đoạn thẳng MB. Đường thẳng qua H, vuông góc với BC cắt đường tròn (O) tại hai điểm A, D sao cho HA > HD. Gọi E, F lần lượt là hình chiếu vuông góc của B,C trên hai cạnh CA, AB. Hai đường thẳng EF, BC cắt nhau tại điểm K. Đường thẳng AK cắt lại đường tròn (O) tại điểm L khác A. 1. Chứng minh rằng bốn điểm A, E, F, L cùng thuộc một đường tròn và ba đường thẳng BE, CF, LM đồng quy. 2. Gọi P là giao điểm của hai đường thẳng BE, FH và Q là giao điểm của hai đường thẳng CF, HE. Chứng minh ba điểm P, Q, K thẳng hàng. 3. Chứng minh rằng khi điểm H thay đổi trên đoạn thẳng MB thì đường thẳng LD luôn đi qua một điểm cố định. + Một nhóm gồm 9 người tham gia buổi offline, biết rằng cử ba người trong nhóm đó thì luôn có hai người không quen nhau. a) Gọi S là số cặp, mỗi cặp gồm hai người trong nhóm quen nhau. Chứng minh S < 20. b) Chứng minh trong nhóm có 4 người nào đó đôi một không quen biết nhau. + Trên bảng ta viết ba số thực không đồng thời bằng nhau. Mỗi lần giả sử trên bảng đang có ba số thực a, b, c ta xoá chúng đi và viết thay vào đó ba số khác là a – b; b – c; c – a. Chứng minh rằng nếu quá trình nói trên tiếp diễn nhiều lần, sẽ có lúc trên bảng thu được một số lớn hơn 2020.
Đề sát hạch Toán 10 lần 3 năm 2019 - 2020 trường THPT Đoàn Thượng - Hải Dương
Đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho tam giác có số đo ba cạnh là 3; 4; 5. Khẳng định nào đúng? A. Tam giác đều. B. Tam giác vuông. C. Tam giác cân. D. Tam giác tù. [ads] + Cho biểu thức f(x) = ax^2 + bx + c (a ≠ 0) và ∆ = b^2 – 4ac. Chọn khẳng định đúng? A. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ R. B. Khi ∆ = 0 thì f(x) trái dấu với hệ số a với mọi x ≠ −b/2a. C. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ≠ −b/2a. D. Khi ∆ > 0 thì f(x) luôn trái dấu hệ số a với mọi x ∈ R. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình mx + m – (m + 2)x = m^2 – 2x có tập nghiệm là R. Tính tổng tất cả các phần tử của S.