Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa

Tài liệu gồm 255 trang, được biên soạn bởi Ths Toán Giải Tích Nguyễn Hữu Chung Kiên, tuyển tập 28 chuyên đề phân loại theo 50 câu trắc nghiệm, 10 đề chuẩn cấu trúc theo đề minh họa môn Toán năm 2022 của Bộ Giáo dục và Đào tạo và 05 đề thi thử TN THPT môn Toán của các trường THPT / sở GD&ĐT có ảnh hưởng trên cả nước. MỤC LỤC : 1 Hoán vị, chỉnh hợp, tổ hợp 1. A Kiến thức cần nhớ 1. B Bài tập mẫu 2. C Bài tập tương tự và phát triển 2. D Bảng đáp án 3. 2 Cấp số cộng – Cấp số nhân 4. A Kiến thức cần nhớ 4. B Bài tập mẫu 4. C Bài tập tương tự và phát triển 5. D Bảng đáp án 6. 3 Xác suất của biến cố 7. A Kiến Thức Cần Nhớ 7. B Bài Tập Mẫu 8. C Bài Tập Tương Tự và Phát Triển 8. D Bảng đáp án 13. 4 Đọc bảng biến thiên, đồ thị 14. A Kiến thức cần nhớ 14. B Bài tập mẫu 14. C Bài tập tương tự và phát triển 16. D Bảng đáp án 28. 5 Tìm GTLN – GTNN của hàm số trên đoạn 29. A Kiến Thức Cần Nhớ 29. B Bài Tập Mẫu 29. C Bài Tập Tương Tự và Phát Triển 29. D Bảng đáp án 31. 6 Tiệm cận của đồ thị hàm số 32. A Kiến thức cần nhớ 32. B Bài tập mẫu 32. C Bài tập tương tự và phát triển 32. D Bảng đáp án 35. 7 Khảo sát, nhận dạng hàm số, đồ thị 36. A Kiến thức cần nhớ 36. B Bài tập mẫu 37. C Bài tập tương tự và phát triển 38. D Bảng đáp án 42. 8 Hàm số lũy thừa, mũ, logarit 43. A Kiến thức cần nhớ 43. B Bài tập mẫu 45. C Bài tập tương tự và phát triển 45. D Bảng đáp án 49. 9 Phương trình – bất phương trình mũ, logarit 50. A Kiến thức cần nhớ 50. B Bài tập mẫu 51. C Bài tập tương tự và phát triển 51. D Bảng đáp án 54. 10 Công thức tính nguyên hàm cơ bản 55. A Kiến thức cần nhớ 55. B Bài tập mẫu 55. C Bài tập tương tự và phát triển 56. D Bảng đáp án 60. 11 Sử dụng tích chất của tích phân 61. A Kiến thức cần nhớ 61. B Bài tập mẫu 61. C Bài tập tương tự và phát triển 62. D Bảng đáp án 64. 12 Số phức 65. A Kiến thức cần nhớ 65. B Bài tập mẫu 66. C Bài tập tương tự và phát triển 67. D Bảng đáp án 71. 13 Góc 72. A Kiến Thức Cần Nhớ 72. B Bài Tập Mẫu 73. C Bài Tập Tương Tự và Phát Triển 74. D Bảng đáp án 76. 14 Khoảng cách 77. A Kiến Thức Cần Nhớ 77. B Bài Tập Mẫu 78. C Bài Tập Tương Tự và Phát Triển 79. D Bảng đáp án 80. 15 Thể tích khối đa diện 81. A Kiến thức cần nhớ 81. B Bài tập mẫu 83. C Bài tập tương tự và phát triển 83. D Bảng đáp án 87. 16 Khối nón 88. A Kiến thức cần nhớ 88. B Bài tập mẫu 90. C Bài tập tương tự và phát triển 90. D Bảng đáp án 93. 17 Khối trụ 94. A Kiến thức cần nhớ 94. B Bài tập mẫu 94. C Bài tập tương tự và phát triển 94. D Bảng đáp án 97. 18 Khối cầu 98. A Kiến Thức Cần Nhớ 98. B Bài Tập Mẫu 98. C Bài Tập Tương Tự và Phát Triển 99. D Bảng đáp án 102. 19 Phương pháp tọa độ trong không gian 103. A Kiến Thức Cần Nhớ 103. B Bài Tập Mẫu 104. C Bài Tập Tương Tự và Phát Triển 104. D Bảng đáp án 105. 20 Phương trình mặt phẳng 106. A Kiến Thức Cần Nhớ 106. B Bài Tập Mẫu 106. C Bài Tập Tương Tự và Phát Triển 107. D Bảng đáp án 108. 21 Phương trình đường thẳng 109. A Kiến Thức Cần Nhớ 109. B Bài Tập Mẫu 109. C Bài Tập Tương Tự và Phát Triển 110. D Bảng đáp án 116. 22 Giá trị nguyên thỏa biểu thức mũ, logarit – Vận dụng 117. A Kiến Thức Cần Nhớ 117. B Bài Tập Mẫu 117. C Bài Tập Tương Tự và Phát Triển 117. D Bảng đáp án 124. 23 Phương trình hàm hợp – Vận dụng 125. A Kiến Thức Cần Nhớ 125. B Bài Tập Mẫu 125. C Bài Tập Tương Tự và Phát Triển 126. D Bảng đáp án 130. 24 Max – min số phức – Vận dụng 131. A Kiến Thức Cần Nhớ 131. B Bài Tập Mẫu 131. C Bài Tập Tương Tự và Phát Triển 131. D Bảng đáp án 133. 25 Diện tích hình phẳng – Vận dụng 134. A Kiến Thức Cần Nhớ 134. B Bài Tập Mẫu 134. C Bài Tập Tương Tự và Phát Triển 135. D Bảng đáp án 138. 26 Phương pháp tọa độ trong không gian – Vận dụng 139. A Kiến Thức Cần Nhớ 139. B Bài Tập Mẫu 139. C Bài Tập Tương Tự và Phát Triển 139. D Bảng đáp án 143. 27 Cực trị hàm ẩn – hàm hợp – Vận dụng 144. A Kiến Thức Cần Nhớ 144. B Bài Tập Mẫu 144. C Bài Tập Tương Tự và Phát Triển 145. D Bảng đáp án 151. 28 Hàm đặc trưng 152. A Bài tập trắc nghiệm 152. B Bảng đáp án 157. 29 ĐỀ THI THPT QUỐC GIA 2021 − LẦN 2 158. 30 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 1 163. 31 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 2 168. 32 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 3 174. 33 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 4 180. 34 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 5 186. 35 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 6 192. 36 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 7 198. 37 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 8 203. 38 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 9 208. 39 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 10 214. 40 ĐỀ THI THỬ SGD HƯNG YÊN 220. 41 ĐỀ THI THỬ SGD BÀ RỊA − VŨNG TÀU 226. 42 ĐỀ THI THỬ SGD VĨNH PHÚC 232. 43 ĐỀ THI THỬ SGD HẠ LONG 238. 44 ĐỀ THI THỬ CHUYÊN ĐHSP HÀ NỘI 244.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu, một chủ đề rất quan trọng trong chương trình Toán THPT. Bên cạnh tài liệu bài toán tối ưu dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu: A. BÀI TẬP TRẮC NGHIỆM B. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế, một chủ đề rất quan trọng trong chương trình Toán THPT. Bên cạnh tài liệu bài toán thực tế dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế: A. KIẾN THỨC CƠ BẢN I. Các dạng toán về lãi suất ngân hàng + Lãi đơn là gì và công thức tính lãi đơn. + Lãi kép là gì và công thức tính lãi kép. + Lãi kép liên tục là gì và công thức tính lãi kép liên tục. + Công thức tính tiền gửi hàng tháng. + Công thức tính tiền gửi ngân hàng và rút tiền gửi hàng tháng. + Công thức tính tiền vay vốn trả góp. + Công thức tính tăng lương. II. Bài toán tăng trưởng dân số B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Phương pháp hàm số đặc trưng - Nguyễn Văn Rin
Tài liệu gồm 43 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Văn Rin, trình bày cơ sở lý thuyết và giới thiệu một số ví dụ áp dụng của phương pháp hàm số đặc trưng trong các đề thi thử THPT Quốc Gia môn Toán cũng như đề chính thức của Bộ Giáo dục và Đào tạo qua các năm. Phương pháp hàm số đặc trưng thường xuyên xuất hiện trong đề thi THPT Quốc Gia môn Toán và nó cũng là một trong những câu phân loại học sinh khá – giỏi của đề thi, ví dụ như: Câu 47 mã đề 101 – THPT QG năm 2017; Câu 35 đề tham khảo – BGD&ĐT năm 2018; Câu 46 mã đề 101 – THPT QG năm 2018; Câu 47 đề tham khảo – BGD&ĐT năm 2020. Khái quát nội dung tài liệu phương pháp hàm số đặc trưng – Nguyễn Văn Rin: I. Cơ sở lý thuyết : Cho hàm số y = f(x) liên tục trên tập D. + Nếu hàm số f(x) đơn điệu (đồng biến hoặc nghịch biến) trên D thì với mọi u, v thuộc D ta có: f(u) = f(v) khi và chỉ khi u = v. + Nếu hàm số f(x) đồng biến trên D thì với mọi u, v thuộc D ta có: f(u) < f(v) khi và chỉ khi u < v. + Nếu hàm số f(x) nghịch biến trên D thì với mọi u, v thuộc D ta có: f(u) < f(v) khi và chỉ khi u > v. [ads] II. Áp dụng + Dạng 1. Giải phương trình, bất phương trình mũ và logarit. + Dạng 2. Tìm điều kiện để phương trình, bất phương trình có nghiệm. + Dạng 3. Tìm GTLN và GTNN của hàm số. + Dạng 4. Tìm nghiệm nguyên của phương trình. + Dạng 5. Tính tích phân.
Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT
Tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT gồm có 283 trang hướng dẫn phương pháp giải nhanh một số dạng bài tập trắc nghiệm môn Toán thường gặp trong đề thi THPT Quốc gia môn Toán, rất hữu ích dành cho học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT QG. Các bài toán trong tài liệu được tác giả phân tích tỉ mỉ, đưa ra lời giải tự luận trước rồi mới giới thiệu một số “mẹo” giúp tìm nhanh đáp án, thông qua sự trợ giúp của máy tính cầm tay Casio / Vinacal … và một số công thức giải nhanh được thiết lập từ các bài toán tổng quát hóa. Khái quát nội dung tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT: Phần I . Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm quan hệ giữa tính đơn điệu và đạo hàm của hàm số. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm cực trị của hàm số. + Chủ đề 3. Các phương pháp giải bài tập trắc nghiệm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Chủ đề 4. Các phương pháp giải bài tập trắc nghiệm đường tiệm cận của đồ thị. + Chủ đề 5. Các phương pháp giải bài tập trắc nghiệm điểm uốn của đồ thị – phép tịnh tiến hệ tọa độ. + Chủ đề 6. Các phương pháp giải bài tập trắc nghiệm sự tương giao của hai đồ thị. + Chủ đề 7. Các phương pháp giải bài tập trắc nghiệm sự tiếp xúc của hai đồ thị. + Chủ đề 8. Các phương pháp giải bài tập trắc nghiệm tiếp tuyến của đồ thị. Phần II . Hàm số lũy thừa, hàm số mũ và hàm số logarit. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm hàm số mũ và hàm số logarit. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm phương trình mũ và phương trình logarit. [ads] Phần III . Nguyên hàm, tích phân và ứng dụng. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm nguyên hàm. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm tích phân. Phần IV . Số phức. + Chủ đề 1. Số phức và các phép toán. + Chủ đề 2. Căn bậc hai của số phức – phương trình bậc hai + Chủ đề 3. Dạng lượng giác của số phức và ứng dụng. Phần V . Phương pháp tọa độ trong không gian + Chủ đề 1. Hệ tọa độ trong không gian. + Chủ đề 2. Phương trình mặt phẳng. + Chủ đề 3. Phương trình đường thẳng.