Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa

Tài liệu gồm 255 trang, được biên soạn bởi Ths Toán Giải Tích Nguyễn Hữu Chung Kiên, tuyển tập 28 chuyên đề phân loại theo 50 câu trắc nghiệm, 10 đề chuẩn cấu trúc theo đề minh họa môn Toán năm 2022 của Bộ Giáo dục và Đào tạo và 05 đề thi thử TN THPT môn Toán của các trường THPT / sở GD&ĐT có ảnh hưởng trên cả nước. MỤC LỤC : 1 Hoán vị, chỉnh hợp, tổ hợp 1. A Kiến thức cần nhớ 1. B Bài tập mẫu 2. C Bài tập tương tự và phát triển 2. D Bảng đáp án 3. 2 Cấp số cộng – Cấp số nhân 4. A Kiến thức cần nhớ 4. B Bài tập mẫu 4. C Bài tập tương tự và phát triển 5. D Bảng đáp án 6. 3 Xác suất của biến cố 7. A Kiến Thức Cần Nhớ 7. B Bài Tập Mẫu 8. C Bài Tập Tương Tự và Phát Triển 8. D Bảng đáp án 13. 4 Đọc bảng biến thiên, đồ thị 14. A Kiến thức cần nhớ 14. B Bài tập mẫu 14. C Bài tập tương tự và phát triển 16. D Bảng đáp án 28. 5 Tìm GTLN – GTNN của hàm số trên đoạn 29. A Kiến Thức Cần Nhớ 29. B Bài Tập Mẫu 29. C Bài Tập Tương Tự và Phát Triển 29. D Bảng đáp án 31. 6 Tiệm cận của đồ thị hàm số 32. A Kiến thức cần nhớ 32. B Bài tập mẫu 32. C Bài tập tương tự và phát triển 32. D Bảng đáp án 35. 7 Khảo sát, nhận dạng hàm số, đồ thị 36. A Kiến thức cần nhớ 36. B Bài tập mẫu 37. C Bài tập tương tự và phát triển 38. D Bảng đáp án 42. 8 Hàm số lũy thừa, mũ, logarit 43. A Kiến thức cần nhớ 43. B Bài tập mẫu 45. C Bài tập tương tự và phát triển 45. D Bảng đáp án 49. 9 Phương trình – bất phương trình mũ, logarit 50. A Kiến thức cần nhớ 50. B Bài tập mẫu 51. C Bài tập tương tự và phát triển 51. D Bảng đáp án 54. 10 Công thức tính nguyên hàm cơ bản 55. A Kiến thức cần nhớ 55. B Bài tập mẫu 55. C Bài tập tương tự và phát triển 56. D Bảng đáp án 60. 11 Sử dụng tích chất của tích phân 61. A Kiến thức cần nhớ 61. B Bài tập mẫu 61. C Bài tập tương tự và phát triển 62. D Bảng đáp án 64. 12 Số phức 65. A Kiến thức cần nhớ 65. B Bài tập mẫu 66. C Bài tập tương tự và phát triển 67. D Bảng đáp án 71. 13 Góc 72. A Kiến Thức Cần Nhớ 72. B Bài Tập Mẫu 73. C Bài Tập Tương Tự và Phát Triển 74. D Bảng đáp án 76. 14 Khoảng cách 77. A Kiến Thức Cần Nhớ 77. B Bài Tập Mẫu 78. C Bài Tập Tương Tự và Phát Triển 79. D Bảng đáp án 80. 15 Thể tích khối đa diện 81. A Kiến thức cần nhớ 81. B Bài tập mẫu 83. C Bài tập tương tự và phát triển 83. D Bảng đáp án 87. 16 Khối nón 88. A Kiến thức cần nhớ 88. B Bài tập mẫu 90. C Bài tập tương tự và phát triển 90. D Bảng đáp án 93. 17 Khối trụ 94. A Kiến thức cần nhớ 94. B Bài tập mẫu 94. C Bài tập tương tự và phát triển 94. D Bảng đáp án 97. 18 Khối cầu 98. A Kiến Thức Cần Nhớ 98. B Bài Tập Mẫu 98. C Bài Tập Tương Tự và Phát Triển 99. D Bảng đáp án 102. 19 Phương pháp tọa độ trong không gian 103. A Kiến Thức Cần Nhớ 103. B Bài Tập Mẫu 104. C Bài Tập Tương Tự và Phát Triển 104. D Bảng đáp án 105. 20 Phương trình mặt phẳng 106. A Kiến Thức Cần Nhớ 106. B Bài Tập Mẫu 106. C Bài Tập Tương Tự và Phát Triển 107. D Bảng đáp án 108. 21 Phương trình đường thẳng 109. A Kiến Thức Cần Nhớ 109. B Bài Tập Mẫu 109. C Bài Tập Tương Tự và Phát Triển 110. D Bảng đáp án 116. 22 Giá trị nguyên thỏa biểu thức mũ, logarit – Vận dụng 117. A Kiến Thức Cần Nhớ 117. B Bài Tập Mẫu 117. C Bài Tập Tương Tự và Phát Triển 117. D Bảng đáp án 124. 23 Phương trình hàm hợp – Vận dụng 125. A Kiến Thức Cần Nhớ 125. B Bài Tập Mẫu 125. C Bài Tập Tương Tự và Phát Triển 126. D Bảng đáp án 130. 24 Max – min số phức – Vận dụng 131. A Kiến Thức Cần Nhớ 131. B Bài Tập Mẫu 131. C Bài Tập Tương Tự và Phát Triển 131. D Bảng đáp án 133. 25 Diện tích hình phẳng – Vận dụng 134. A Kiến Thức Cần Nhớ 134. B Bài Tập Mẫu 134. C Bài Tập Tương Tự và Phát Triển 135. D Bảng đáp án 138. 26 Phương pháp tọa độ trong không gian – Vận dụng 139. A Kiến Thức Cần Nhớ 139. B Bài Tập Mẫu 139. C Bài Tập Tương Tự và Phát Triển 139. D Bảng đáp án 143. 27 Cực trị hàm ẩn – hàm hợp – Vận dụng 144. A Kiến Thức Cần Nhớ 144. B Bài Tập Mẫu 144. C Bài Tập Tương Tự và Phát Triển 145. D Bảng đáp án 151. 28 Hàm đặc trưng 152. A Bài tập trắc nghiệm 152. B Bảng đáp án 157. 29 ĐỀ THI THPT QUỐC GIA 2021 − LẦN 2 158. 30 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 1 163. 31 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 2 168. 32 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 3 174. 33 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 4 180. 34 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 5 186. 35 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 6 192. 36 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 7 198. 37 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 8 203. 38 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 9 208. 39 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 10 214. 40 ĐỀ THI THỬ SGD HƯNG YÊN 220. 41 ĐỀ THI THỬ SGD BÀ RỊA − VŨNG TÀU 226. 42 ĐỀ THI THỬ SGD VĨNH PHÚC 232. 43 ĐỀ THI THỬ SGD HẠ LONG 238. 44 ĐỀ THI THỬ CHUYÊN ĐHSP HÀ NỘI 244.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi THPT Quốc gia môn Toán - Hồ Xuân Trọng
Tài liệu gồm 335 trang, được tổng hợp và biên soạn bởi thầy giáo Hồ Xuân Trọng, tuyển chọn câu hỏi và bài tập trắc nghiệm các chủ đề quan trọng ôn thi THPT Quốc gia môn Toán. PHẦN I GIẢI TÍCH 12. CHƯƠNG 1 Khảo sát hàm số và ứng dụng. 1 Sự đồng biến, nghịch biến của hàm số. 2 Tìm điều kiện của tham số để hàm số đơn điệu trên một khoảng cho trước. 3 Tính đơn điệu của hàm hợp. 4 Cực trị của hàm số (I). 5 Cực trị của hàm số (II). 6 Tìm cực trị của hàm số hợp. 7 Giá trị lớn nhất và giá trị nhỏ nhất của hàm số. 8 Giá trị lớn nhất, nhỏ nhất của hàm số y = |f(x)|. 9 Tiệm cận của đồ thị hàm số. 10 Nhận dạng hàm số từ đồ thị, bảng biến thiên. 11 Phát hiện tính chất của hàm số dựa và đồ thị của hàm số, đồ thị của đạo hàm. 12 Sử dụng sự tương giao để xét phương trình (I). 13 Sử dụng sự tương giao để xét phương trình (II. CHƯƠNG 2 Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. 1 Lôgarit (I). 2 Lôgarit (II). 3 Lôgarit (III). 4 Phương trình, bất phương trình logarit. 5 Phương trình, bất phương trình mũ và logarit. 6 Phương trình lôgarit có chứa tham số. 7 Ứng dụng phương pháp hàm số giải phương trình mũ và logarit. 8 Công thức lãi kép. CHƯƠNG 3 Nguyên hàm, tích phân và ứng dụng. 1 Nguyên hàm cơ bản (I). 2 Nguyên hàm cơ bản (II). 3 Nguyên hàm từng phần. 4 Tính chất của tích phân. 5 Tích phân cơ bản. 6 Tính tích phân bằng phương đổi biến. 7 Ứng dụng của tích phân. CHƯƠNG 4 Số phức. 1 Khái niệm số phức và các phép toán. 2 Các phép toán. 3 Biểu diễn hình học của số phức. [ads] PHẦN II HÌNH HỌC 12. CHƯƠNG 5 Thể tích khối đa diện. 1 Tính thể tích khối chóp. 2 Thể tích khối lăng trụ đứng (I). 3 Thể tích khối lăng trụ đứng (II). CHƯƠNG 6 Mặt nón – Mặt trụ – Mặt cầu. 1 Hình nón và khối nón (I). 2 Hình nón và khối nón (II). 3 Khối trụ. CHƯƠNG 7 Phương pháp tọa độ trong không gian. 1 Tọa độ của điểm, tọa độ của véc-tơ. 2 Phương trình mặt phẳng. 3 Phương trình đường thẳng (I). 4 Phương trình đường thẳng (II). 5 Phương trình mặt phẳng liên quan đến đường thẳng. 6 Bài toán tìm hình chiếu. 7 Phương trình mặt cầu (I). 8 Phương trình mặt cầu (II). PHẦN III ĐẠI SỐ & GIẢI TÍCH 11. CHƯƠNG 8 Tổ hợp – Xác suất – Công thức khai triển nhị thức Newton. 1 Các quy tắc đếm. 2 Xác suất. CHƯƠNG 9 Dãy số – Cấp số cộng và cấp số nhân. 1 Cấp số cộng, cấp số nhân. PHẦN IV HÌNH HỌC 11. 1 Góc. 2 Khoảng cách.
Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 24 trang, được biên soạn bởi thầy Trần Tuấn Anh, hướng dẫn sử dụng chủ yếu suy luận trong giải toán trắc nghiệm, giúp học sinh ôn thi tốt nghiệp Trung học Phổ thông Quốc gia môn Toán. Một số bài toán có dạng đặc biệt được giải nhanh nhờ những suy luận toán học, mà nếu chúng ta giải bằng cách thông thường thì cho ta lời giải khá dài, do đó mất thời gian. Đây thường là những bài toán ở mức vận dụng và vận dụng cao, do đó chúng ta cần chuẩn bị kiến thức sâu rộng để linh hoạt trong việc giải quyết bài toán đó, không bị dập theo một khuôn mẫu khô cứng, thiếu sáng tạo. [ads] Các phương pháp được trình bày ở trên một cách độc lập nhằm đem lại cho độc giả cái nhìn chung, tổng quát nhất về mỗi phương pháp. Thế nhưng, việc phân định rạch ròi các phương pháp là rất khó khăn, có nhiều bài toán chúng ta phải kết hợp một số phương pháp để chọn được đúng đáp án. Ở trong phương pháp này lại có dấu vết nào đó của phương pháp kia, khiến chúng ta băn khoăn trong việc chọn lựa phương pháp. Vì thế, trong quá trình giải toán, chúng ta cần linh hoạt vận dụng các phương pháp theo hướng tổng lực để xử lý bài toán trắc nghiệm. Tận dụng mặt mạnh, hữu dụng của mỗi phương pháp đối với các dạng bài toán trắc nghiệm khác nhau. Không chỉ tư duy trên nền tảng một phương pháp.
Tóm tắt kiến thức Toán ôn thi THPT Quốc gia - Hoàng Xuân Nhàn
Tài liệu gồm 41 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, tóm tắt kiến thức môn Toán THPT (10 – 11 – 12), giúp học sinh ôn thi THPT Quốc gia môn Toán. Chủ đề 1. Công thức lượng giác. Chủ đề 2. Phương trình lượng giác. Chủ đề 3. Tổ hợp – xác suất. Chủ đề 4. Khai triển nhị thức Newton. Chủ đề 5. Cấp số cộng – cấp số nhân. Chủ đề 6. Giới hạn dãy số – hàm số. Chủ đề 7. Đạo hàm. Chủ đề 8. Khảo sát hàm số và bài toán liên quan. Chủ đề 9. Lũy thừa – mũ và logarit. Chủ đề 10. Nguyên hàm – tích phân. Chủ đề 11. Số phức và các yếu tố liên quan. Chủ đề 12. Khối đa diện và thể tích của chúng. Chủ đề 13. Hình học giải tích trong không gian. Chủ đề 14. Gắn tọa độ vào hình học không gian. Xem thêm : Bảng tóm tắt công thức Toán 12
Hệ thống kiến thức và phương pháp giải Toán THPT - Võ Công Trường
Tài liệu gồm 68 trang, được biên soạn bởi thầy Võ Công Trường, hệ thống kiến thức và phương pháp giải Toán THPT, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu hệ thống kiến thức và phương pháp giải Toán THPT – Võ Công Trường: Chủ đề 1 : Khảo sát hàm số và các bài toán liên quan. 1. Bảng đạo hàm. 2. Sự biến thiên. 3. Cực trị. 4. Giá trị lớn nhất – giá trị nhỏ nhất. 5. Đường tiệm cận. 6. Khảo sát và vẽ đồ thị của hàm số. 7. Tiếp tuyến. 8. Sự tương giao (dấu hiệu nhận biết: trong đề có từ: cắt, tiếp xúc, giao điểm hay điểm chung). 9. Ứng dụng sự tương giao. 10. Phép suy đồ thị. Chủ đề 2 : Lũy thừa, mũ và lôgarít. 1. Công thức. 2. Hàm số mũ và hàm số lôgarít. 3. Phương trình, bất phương trình mũ, lôgarit. 4. Ứng dụng hàm mũ – lôgarit vào bài toán thực tế. Chủ đề 3 : Nguyên hàm, tích phân và ứng dụng. 1. Nguyên hàm. 2. Tích phân. 3. Ứng dụng tích phân để tính diện tích, thể tích. Chủ đề 4 : Số phức. 1. Công thức, phép toán. 2. Phương trình bậc hai. 3. Tìm số phức thỏa điều kiện cho trước. 4. Tìm tập hợp điểm biểu diễn số phức. Chủ đề 5 : Khối đa diện. 1. Thể tích khối đa diện. 2. Ứng dụng thể tích. 3. Một số hình đa diện thường gặp. 4. Công thức đặc biệt tính thể tích khối tứ diện ABCD. Chủ đề 6 : Khối tròn xoay. 1. Thể tích, diện tích hình tròn xoay. 2. Sự tương giao giữa hình tròn xoay và hình đa diện. Chủ đề 7 : Phương pháp tọa độ trong không gian. 1. Vectơ và tọa độ. 2. Mặt phẳng. 3. Đường thẳng. 4. Mặt cầu. 5. Vị trí tương đối. 6. Khoảng cách. 7. Góc. 8. Hình chiếu, điểm đối xứng. 9. Tìm tọa độ điểm thỏa điều kiện lớn nhất, nhỏ nhất. 10. Tọa độ các tâm của tam giác. [ads] Phụ lục Phương trình, bất phương trình và hệ phương trình. 1. Nhị thức bậc nhất. 2. Tam thức bậc hai, phương trình bậc hai. 3. Phương trình bậc ba. 4. Phương trình bậc bốn trùng phương. 5. Phương trình chứa căn thức. 6. Bất phương trình chứa căn thức. 7. Phương trình, bất phương trình chứa dấu giá trị tuyệt đối. 8. Hệ phương trình. Bất đẳng thức. Lượng giác. Tổ hợp và xác suất. Cấp số cộng – cấp số nhân. Giới hạn. Hình học (tổng hợp) phẳng. 1. Hệ thức lượng trong tam giác. 2. Hệ thức lượng trong tứ giác. 3. Hệ thức lượng trong đường tròn. 4. Tâm của tam giác. Hình học tọa độ trong mặt phẳng. 1. Tọa độ. 2. Phương trình đường thẳng. 3. Phương trình đường tròn. 4. Elíp. 5. Công thức tính diện tích tam giác, hình bình hành bằng tọa độ. Phép biến hình trong mặt phẳng. Hình học không gian (tổng hợp) lớp 11. 1. Quan hệ song song. Dạng 1: Chứng minh quan hệ song song. Dạng 2: Tìm giao tuyến của 2 mặt phẳng. Dạng 3: Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 4: Tìm thiết diện của hình chóp, lăng trụ được cắt bởi mặt phẳng. 2. Quan hệ vuông góc. Dạng 1: Chứng minh quan hệ vuông góc. Dạng 2: Tìm hình chiếu của điểm lên mặt phẳng. Dạng 3: Tính góc. Dạng 4: Tính khoảng cách. Sơ đồ tư duy Toán THPT.