Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Thừa Thiên Huế

Thứ Bảy ngày 05 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Để phục vụ công tác phòng chống dịch COVID – 19, một công ty A lên kế hoạch trong một thời gian quy định làm 20000 tấm chắn bảo hộ để tặng các chốt chống dịch. Do ý thức khẩn trương trong công tác hỗ trợ chống dịch và nhờ cải tiến quy trình làm việc nên mỗi ngày công ty A làm được nhiều hơn 300 tấm so với kế hoạch ban đầu. Vì thế, công ty A đã hoàn thành kế hoạch sớm hơn đúng một ngày so với thời gian quy định và làm được nhiều hơn 700 tấm so với kế hoạch ban đầu. Biết rằng số tấm làm ra trong mỗi ngày là bằng nhau và nguyên cái. Hỏi theo kế hoạch ban đầu, mỗi ngày công ty A cần làm bao nhiêu tấm chắn bảo hộ? + Cho ba điểm A B C phân biệt, cố định và thẳng hàng sao cho B nằm giữa A và C. Vẽ nửa đường tròn tâm O đường kính BC. Từ A kẻ tiếp tuyến AM đến nửa đường tròn (O) (M là tiếp điểm). Trên cung MC lấy điểm E (E không trùng với M và C), đường thẳng AE cắt nửa đường tròn (O) tại điểm thứ hai là F (F không trùng E). Gọi I là trung điểm của EF và H là hình chiếu vuông góc của điểm M lên đường thẳng BC. Chứng minh: a) Tứ giác AMIO nội tiếp. b) Hai tam giác OFH và OAF đồng dạng. c) Trọng tâm G của tam giác OEF luôn nằm trên một đường tròn cố định khi điểm E thay đổi trên cung MC. + Một khúc gỗ đặc có dạng hình trụ, bán kính hình tròn đáy là 10 cm, chiều cao bằng 20 cm, người ta tiện bỏ bên trong khúc gỗ một vật dạng hình nón có bán kính hình tròn đáy là 10 cm, chiều cao bằng một nửa chiều cao của khúc gỗ (như hình vẽ bên). Tính thể tích phần khúc gỗ còn lại.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Phú Thọ
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Phú Thọ gồm có 02 trang với 10 câu trắc nghiệm và 04 câu tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Phú Thọ : + Cho hình vuông ABCD nội tiếp đường tròn tâm O. Gọi M, N lần lượt là trung điểm BC, CD. Đường thẳng AM, BN cắt đường tròn lần lượt là E, F (như hình vẽ bên). Số đo góc EDF bằng? + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Tia phân giác góc BAC cắt cạnh BC tại D và cắt đường tròn (O) tại M. Gọi K là hình chiếu của M trên AB. T là hình chiếu của M trên AC. Chứng minh rằng: a. AKMT là tứ giác nội tiếp. b. MB^2 = MC^2 = MD.MA. c. Khi đường tròn (O) và B; C cố định, điểm A thay đổi trên cung lớn BC thì tổng AB/MK + AC/MT có giá trị không đổi. [ads] + Cho phương trình: x2 – 2mx + m – 1 = 0 (m là tham số). a. Giải phương trình khi m = 2. b. Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m. c. Gọi x1; x2 là hai nghiệm của phương trình. Tìm m để x1^2.x2 + mx2 – x1 = 4.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Nam Định
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Nam Định gồm có 02 trang với 08 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Nam Định : + Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Hai đường cao BD, CE của tam giác ABC cắt nhau tại H. Các tia BD, CE cắt đường tròn (O;R) lần lượt tại điểm thứ hai là P, Q. 1) Chứng minh rằng tứ giác BCDE nội tiếp và cung AP bằng cung AQ. 2) Chứng minh E là trung điểm của HQ và OA ⊥ DE. 3) Cho góc CAB bằng 60 độ, R = 6cm. Tính bán kính đường tròn ngoại tiếp tam giác AED. [ads] + Cho đường tròn (O;5cm) và đường tròn (O’;7cm), biết OO’ = 2cm. Vị trí tương đối của hai đường tròn đó là: A. Cắt nhau. B. Tiếp xúc trong. C. Tiếp xúc ngoài. D. Đựng nhau. + Diện tích xung quanh hình trụ có bán kính đáy 5 cm, chiều cao 2 cm là?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Đồng Nai
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Một hình cầu có thể tích bằng 288π (cm3). Tính diện tích mặt cầu. + Một nhóm học sinh được giao xếp 270 quyển sách vào tủ ở thư viện trong một thời gian nhất định. Khi bắt đầu làm việc nhóm được bổ sung thêm học sinh nên mỗi giờ nhóm sắp xếp nhiều hơn dự định 20 quyển sách, vì vậy không những hoàn thành trước dự định 1 giờ mà còn vượt mức được giao 10 quyển sách. Hỏi số quyển sách mỗi giờ nhóm dự định xếp là bao nhiêu. [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, AB<AC. Vẽ đường kính AD của (O). Gọi K là giao điểm của đường thẳng AH với (O), K khác A. Gọi L, P lần lượt là giao điểm của hai đường thẳng BC và EF, AC và KD. 1.Chứng minh tứ giác EHKP nội tiếp đường tròn và tâm I của đường tròn này thuộc đường thẳng BC. 2.Gọi M là trung điểm của đoạn BC. Chứng minh AH = 2OM. 3. Gọi T là giao điểm của đường tròn (O) với đường tròn ngoại tiếp tam giác EFK, T khác K. Chứng minh rằng ba điểm L, K, T thẳng hàng.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thừa Thiên Huế
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Để xây dựng thành phố Huế ngày càng đẹp hơn và khuyến khích người dân rèn luyện sức khỏe. Ủy ban nhân dân tỉnh Thừa Thiên Huế đã cho xây dựng tuyến đường đi bộ ven bờ Bắc sông Hương, từ cầu Trường Tiền đến cầu Dã Viên có chiều dài 2km. Một người đi bộ trên tuyến đường này, khởi hành từ cầu Trường Tiền đến cầu Dã Viên rồi quay về lại cầu Trường Tiền hết tất cả 17/18 giờ. Tính vận tốc của người đó lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là 0,5 km/h. [ads] + Một chiếc cốc thủy tính có dạng hình trụ, chiều cao bằng 10cm và chứa một lượng nước có thể tích bằng một nửa thể tích của chiếc cốc. Một chiếc có thủy tinh khác có dạng hình nón (không chứa gì cả) và có bán kính đáy bằng bán kính đáy chiếc cốc hình trụ đã cho (hình vẽ bên). Biết rằng khi đổ hết lượng nước trong chiếc cốc hình trụ vào chiếc cốc hình nón thì chiếc cốc hình nón đầy nước và không có nước tràn ra ngoài. Tính chiều cao của chiếc cốc có dạng hình nón (bỏ qua bề dày của thành cốc và đáy cốc). + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi M là một điểm bất kỳ trên cung nhỏ AC sao cho BCM nhọn (M không trùng A và C). Gọi E và F lần lượt là chân các đường vuông góc kẻ từ M đến BC và AC. Gọi P là trung điểm của AB, Q là trung điểm của FE. Chứng minh rằng: a) Tứ giác MFEC nội tiếp. b) Tam giác FEM và tam giác ABM đồng dạng. c) MA.MQ = MP.MF và góc PQM = 90 độ.