Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế

Cuốn sách Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế – Trần Công Diêu, Nguyễn Văn Quang gồm 444 trang phân dạng, tuyển chọn và hướng dẫn giải các bài toán trắc nghiệm thực tế và các bài toán vận dụng cao trong các đề thi thử môn Toán. Chương 1. Bài toán vận dụng cao chuyên đề ứng dụng đạo hàm Chủ đề 1. Các bài toán thực tế ứng dụng đạo hàm để giải + Dạng 1. Một số bài toán ứng dụng về kinh doanh, sản xuất trong đời sống + Dạng 2. Một số bài toán ứng dụng về chuyển động Chủ đề 2. Tìm giá trị của tham số để hàm số đơn điệu trên miền D Chủ đề 3. Giải và biện luận phương trình, bất phương trình dựa vào hàm số Chủ đề 4. Tìm giá trị của tham số để hàm số có cực trị thỏa mãn các yếu tố đặc biệt Chủ đề 5. Tìm giá trị của tham số để 2 hàm số giao nhau thỏa mãn các yếu tố đặc biệt Chủ đề 6. Tìm giá trị của tham số để tiếp tuyến của hàm số thỏa mãn các yếu tố đặc biệt Chương 2. Bài toán vận dụng cao chuyên đề hàm số mũ, logarit Chủ đề 1. Tính số chữ số của một số tự nhiên Chủ đề 2. Các dạng bài toán lãi suất Chủ đề 3. Các dạng toán khác: Hàm số mũ và hàm số logarit còn được áp dụng trong các bài toán tính dân số, tính lượng khí, tính độ pH [ads] Chương 3. Bài toán vận dụng cao nguyên hàm, tích phân Chủ đề 1. Các bài toán nguyên hàm Chủ đề 2. Các bài toán tích phân Chủ đề 3. Ứng dụng tích phân để tính diện tích, thể tích Chủ đề 4. Ứng dụng tích phân giải bài toán vật lý và bài toán thực tế Chương 4. Bài toán vận dụng cao số phức Chủ đề 1. Các bài toán tính toán số phức Chủ đề 2. Phương trình số phức Chủ đề 3. Các bài toán liên quan đến biểu diễn điểm, tập hợp điểm Chương 5. Bài toán vận dụng cao hình học không gian Chủ đề 1. Thể tích khối đa diện Chủ đề 2. Mặt cầu – Khối cầu Chủ đề 3. Mặt nón – Khối nón Chủ đề 4. Mặt trụ – Khối trụ Chủ đề 5. Ứng dụng hình học không gian giải các bài toán thực tế Chương 6. Bài toán vận dụng cao hình học Oxyz Chủ đề 1. Tọa độ của điểm và vectơ trong không gian Chủ đề 2. Mặt phẳng trong không gian Chủ đề 3. Đường thẳng trong không gian Chủ đề 4. Mặt cầu Xem thêm : + Tổng hợp 250 câu hỏi trắc nghiệm vận dụng cao – Nhóm Toán   + Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử – Nguyễn Văn Rin

Nguồn: toanmath.com

Đọc Sách

50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán
Tài liệu gồm 481 trang, được biên soạn bởi thầy giáo Vũ Ngọc Huy (trường THPT chuyên Lê Quý Đôn, tỉnh Ninh Thuận), tuyển tập 50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán của Bộ Giáo dục và Đào tạo, có đầy đủ đáp án và lời giải chi tiết. MỤC LỤC : Phần 1. 50 CÂU PHÁT TRIỂN ĐỀ MINH HỌA 2023. 1 Điểm biểu diễn số phức. 2 Hàm số logarit. 3 Đạo hàm hàm lũy thừa – Hàm mũ – logarit. 4 Phương trình mũ – Bất phương trình mũ. 5 Cấp số cộng, cấp số nhân. 6 Phương trình mặt phẳng. 7 Bài toán liên quan đến giao điểm giữa các đồ thị. 8 Tính chất tích phân. 9 Nhận dạng đồ thị hàm số. 10 Phương trình mặt cầu. 11 Góc giữa hai mặt phẳng. 12 Các phép toán cơ bản của số phức. 13 Tính thể tích khối lăng trụ đứng. 14 Thể tích khối chóp. 15 Định nghĩa, tính chất, vị trí tương đối liên quan đến mặt cầu. 16 Số phức và các phép toán. 17 Hình nón, hình trụ. 18 Phương trình đường thẳng. 19 Tìm cực trị của hàm số biết bảng biến thiên hoặc đồ thị. 20 Đường tiệm cận. 21 Phương trình và bất phương trình logarit. 22 Phép đếm – Hoán vị – Chỉnh hợp – Tổ hợp. 23 Nguyên hàm. 24 Tích phân. 25 Nguyên hàm. 26 Xét tính đơn điệu dựa vào bảng biến thiên của hàm số. 27 Tìm cực trị của hàm số dựa vào đồ thị. 28 Lôgarit. 29 Ứng dụng tích phân tính thể tích vật thể tròn xoay. 30 Góc giữa hai mặt phẳng trong không gian. 31 Sự tương giao của hai đồ thị. 32 Xét tính đơn điệu của hàm số. 33 Xác suất. 34 Phương trình mũ. 35 Phép đếm. 36 Viết phương trình đường thẳng. 37 Điểm đối xứng, hình chiếu của một điểm. 38 Khoảng cách từ một điểm tới mặt phẳng. 39 Phương trình mũ và phương trình logarit. 40 Tích phân hàm ẩn. 41 Cực trị. 42 Cực trị của số phức. 43 Phép đếm. 44 Diện tích hình phẳng. 45 Phương trình với hệ số phức. 46 Phương trình mặt phẳng và khoảng cách. 47 Phép đếm. 48 Hình nón – Hình Trụ. 49 Tương giao đường thẳng, mặt phẳng, mặt cầu, cực trị. 50 Tính đơn điệu của hàm số liên kết. Trong mỗi dạng toán đều bao gồm các nội dung: A Kiến thức cần nhớ – B Bài tập mẫu – C Bài tập tương tự và phát triển – D Bảng đáp án.
Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán
Tài liệu gồm 545 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, phát triển 16 dạng toán trọng tâm, mức độ vận dụng – vận dụng cao (VD – VDC), từ câu 35 đến câu 50 trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán của Bộ Giáo dục và Đào tạo. + Dạng 1 Tập Hợp Điểm Biểu Diễn Số Phức. + Dạng 2 Viết Phương Trình Đường Thẳng Đi Qua Hai Điểm. + Dạng 3 Tìm Tọa Độ Điểm Liên Quan Đến Mặt Phẳng. + Dạng 4 Khoảng Cách Trong Không Gian. + Dạng 5 Bất Phương Trình Logarit. + Dạng 6 Tính Tích Phân. + Dạng 7 Cực Trị Của Hàm Số. + Dạng 8 Cực Trị Số Phức. + Dạng 9 Thể Tích Khối Đa Diện Khi Biết Yếu Tố Khoảng Cách. + Dạng 10 Ứng Dụng Tích Phân Tính Diện Tích Hình Phẳng. + Dạng 11 Phương Trình Bậc Hai Số Phức. + Dạng 12 Khoảng Cách Trong Hệ Tọa Độ Oxyz. + Dạng 13 Tìm Cặp Số Nguyên Liên Quan Đến Bất Phương Trình Logarit. + Dạng 14 Tính Khoảng Cách Liên Quan Đến Mặt Nón. + Dạng 15 Cực Trị Trong Không Gian Oxyz. + Dạng 16 Tính Đơn Điệu Hàm Số Chứa Giá Trị Tuyệt Đối. Trong mỗi dạng toán đều bao gồm các phần: Kiến Thức Cần Nhớ; Bài Tập Trong Đề Minh Họa; Bài Tập Tương Tự Và Phát Triển; có đáp án và lời giải chi tiết.
Chuyên đề phát triển VD - VDC đề tham khảo thi TN THPT 2023 môn Toán
Tài liệu gồm 529 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập các chuyên đề phát triển bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán : + Có bao nhiêu giá trị nguyên của tham số m để hàm số 4 2 y x x mx 6 có ba điểm cực trị? Lời giải: Chọn B. Ta có: 3 y x x m 4 12. Xét phương trình 3 y x x m 0 4 12 0 1. Để hàm số có ba điểm cực trị thì phương trình 1 phải có 3 nghiệm phân biệt. Ta có: 3 1 4 12 m x x. Xét hàm số 3 g x x x 4 12 có 2 g x x 12 12. Cho 2 g x x 12 12 0 1. Bảng biến thiên của g x. Dựa vào bảng biến thiên ta thấy, phương trình 1 có 3 nghiệm phân biệt khi 8 8 m. Do m 6 5. Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy I J K là hình chiếu của S lên AC CB BA. Dễ dàng chứng minh được góc giữa các mặt bên và đáy là các góc SIH SJH SKH và các tam giác vuông SHI SHJ SHK bằng nhau nên HI HJ HK. Do đó H là tâm đường tròn nội tiếp của tam giác ABC. Ta có: 0 AC AB a BC tan 60 3 2a. Nên diện tích và nửa chu vi của tam giác ABC lần lượt là: 2 2 a a AB AC BC S AB. Suy ra bán kính đường tròn nội tiếp của tam giác ABC là: 2 a S r HK p. Đường cao của khối chóp SABC là 3 3 tan 60 2 a SH HK. Vậy thể tích khối chóp đã cho là? + Cho hàm số 1 3 2 2 4 3 y f x x x mx. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 2023 2023 để hàm số y f x 4 nghịch biến trên khoảng 03? Lời giải: Ta có: y f x f x. Đặt t x 4 với x t x 1. Do đó, hàm số y f x 4 nghịch biến trên khoảng 03 khi và chỉ khi hàm số y f t nghịch biến trên khoảng 4 1. Mặt khác y f t là hàm số chẵn, có đồ thị đối xứng qua trục tung. Suy ra hàm số y f t nghịch biến trên khoảng 4 1 khi hàm số y f t đồng biến trên 14 tương ứng với hàm số y f t đồng biến trên 14. Do m và m 2023 2023 nên có 2023 giá trị nguyên của m thỏa mãn bài toán.
Phân tích đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán
Tài liệu gồm 87 trang, được biên soạn bởi quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: Trần Ngọc Hùng, Ngụy Như Thái, Quảng Đại Hạn, Quảng Đại Phước, Đàng Xuân Phi, Quảng Đại Mưa, Nguyễn Văn Hồng, hướng dẫn phân tích chi tiết đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán. Dạng 1: Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 2: Tính xác suất bằng định nghĩa. Dạng 3: Tìm hạng tử trong cấp số nhân. Dạng 4: Xác định góc giữa hai mặt phẳng, đường và mặt. Dạng 5: Khoảng cách từ một điểm đến một mặt phẳng. Dạng 6: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng 7: Tìm cực trị dựa vào BBT, đồ thị. Dạng 8: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng 9: Nhận dạng đồ thị, bảng biến thiên. Dạng 10: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng 11: Xét tính đơn điệu của hàm số cho bởi công thức. Dạng 12: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 13: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 14: Câu hỏi lý thuyết. Dạng 15: Đạo hàm hàm số lũy thừa. Dạng 16: Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng 17: Bất phương trình cơ bản. Dạng 18: Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng 19: Phương pháp đặt ẩn phụ. Dạng 20: Phương pháp đưa về cùng cơ số. Dạng 21: Phương pháp đưa về cùng cơ số. Dạng 22: Phương pháp hàm số, đánh giá. Dạng 23: Định nghĩa, tính chất và tích phân cơ bản. Dạng 24: Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng 25: Định nghĩa, tính chất và tích phân cơ bản. Dạng 26: Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng 27: Phương pháp đổi biến số. Dạng 28: Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng 29: Xác định các yếu tố cơ bản của số phức. Dạng 30: Biểu diễn hình học cơ bản của số phức. Dạng 31: Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 32: Bài toán tập hợp điểm. Dạng 33: Định lí Viet và ứng dụng. Dạng 34: Phương pháp đại số. Dạng 35: Tính thể tích các khối đa diện. Dạng 36: Các bài toán khác (góc, khoảng cách) liên quan đến thể tích khối đa diện. Dạng 37: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 38: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 39: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 40: Xác định VTPT. Dạng 41: Góc. Dạng 42: Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng 43: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 44: Viết phương trình đường thẳng. Dạng 45: Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 46: Các bài toán cực trị. Dạng 47: Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng.