Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán

Tài liệu gồm 689 trang, được tổng hợp bởi thầy giáo Th.S Nguyễn Hoàng Việt, tổng ôn 50 dạng toán kỳ thi tốt nghiệp THPT môn Toán. Bài 1. Phép Đếm 1. Bài 2. Cấp Số Cộng – Cấp Số Nhân 8. Bài 3. Sử Dụng Các Công Thức Liên Quan Đến Hình Nón 14. Bài 4. Xét Sự Đơn Điệu Dựa Vào Bảng Biến Thiên 23. Bài 5. Thể Tích Khối Lăng Trụ Đều 31. Bài 6. Giải Phương Trình -Bất Phương Trình Logarit 40. Bài 7. Sử Dụng Tính Chất Của Tích Phân 50. Bài 8. Cực Trị Hàm Số 61. Bài 9. Khảo Sát Hàm Số – Nhận Dạng Hàm Số, Đồ Thị 70. Bài 10. Sử Dụng Tính Chất Của Logarit 82. Bài 11. Tính Nguyên Hàm Bằng Cách Sử Dụng Tính Chất Của Nguyên Hàm 89. Bài 12. Khái Niệm Số Phức 97. Bài 13. Bài Toán Tìm Hình Chiếu Của Điểm Trên Mặt Phẳng Tọa Độ 104. Bài 14. Xác Định Tâm, Bán Kính, Diện Tích, Thể Tích Của Mặt Cầu 115. Bài 15. Xác Định Vectơ Pháp Tuyến Của Mặt Phẳng 124. Bài 16. Phương Trình Đường Thẳng 131. Bài 17. Xác Định Góc Giữa Hai Đường Thẳng, Đường Thẳng Và Mặt Phẳng, Hai Mặt Phẳng 141. Bài 18. Đếm Số Điểm Cực Trị Dựa Vào Bảng Biến Thiên 156. Bài 19. Tìm Giá Trị Lớn Nhất- Giá Trị Nhỏ Nhất Của Hàm Số Trên Một Đoạn 167. Bài 20. Biến Đổi Biểu Thức Lôgarit 176. Bài 21. Phương Trình, Bất Phương Trình Mũ Và Logarit 185. Bài 22. Khối Trụ 192. Bài 23. Liên Quan Giao Điểm Từ Hai Đồ Thị 203. Bài 24. Nguyên Hàm Cơ Bản 217. Bài 25. Toán Thực Tế Sử Dụng Hàm Mũ Và Lôgarit 226. Bài 26. Tính Thể Tích Khối Lăng Trụ Đứng 236. Bài 27. Tiệm Cận Của Đồ Thị Hàm Số 251. Bài 28. Tính Chất Đồ Thị – Hàm Số – Đạo Hàm 260. Bài 29. Ứng Dụng Tích Phân 271. Bài 30. Các Phép Toán Số Phức 285. Bài 31. Biểu Diễn Hình Học Của Số Phức 292. Bài 32. Tích Vô Hướng Của Hai Vectơ Trong Không Gian 299. Bài 33. Viết Phương Trình Mặt Cầu 305. Bài 34. Phương Trình Mặt Phẳng Liên Quan Đến Đường Thẳng 312. Bài 35. Tìm Véc-Tơ Chỉ Phương Của Đường Thẳng 322. Bài 36. Tính Xác Suất Của Biến Cố Bằng Định Nghĩa 331. Bài 37. Khoảng Cách Giữa Hai Đường Thẳng Chéo Nhau 349. Bài 38. Tích Phân Cơ Bản (A), Kết Hợp (B) 371. Bài 39. Tìm Tham Số Để Hàm Số Bậc 1 Trên Bậc 1 Đơn Điệu 395. Bài 40. Khối Nón 416. Bài 41. Lôgarit 435. Bài 42. Max, Min Của Hàm Trị Tuyệt Đối Có Chứa Tham Số 454. Bài 43. Phương Trình Logarit Có Chứa Tham Số 474. Bài 44. Nguyên Hàm Từng Phần 494. Bài 45. Liên Quan Đến Giao Điểm Của Hai Đồ Thị 513. Bài 46. Tìm Cực Trị Của Hàm Số Hợp Khi Biết Đồ Thị Hàm Số 545. Bài 47. Ứng Dụng Phương Pháp Hàm Số Giải Phương Trình Mũ Và Logarit 576. Bài 48. Tích Phân Liên Quan Đến Phương Trình Hàm Ẩn 602. Bài 49. Tính Thể Tích Khối Chóp Biết Góc Giữa Hai Mặt Phẳng 627. Bài 50. Tính Đơn Điệu Của Hàm Số Liên Kết 652.

Nguồn: toanmath.com

Đọc Sách

Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt
Nội dung Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt Bản PDF - Nội dung bài viết Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Máy tính cầm tay không chỉ giúp chúng ta tính toán một cách chính xác mà còn là một trợ thủ đắc lực trong việc giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình, Bất Đẳng Thức và nhiều loại toán khác. Tác giả Bùi Thế Việt là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Đã có nhiều trường hợp tác giả áp dụng những kỹ năng này vào các kỳ thi và đạt được kết quả đáng kinh ngạc. Việt chia sẻ rằng chỉ cần vài phút, anh đã giải quyết một câu Phương Trình Vô Tỷ một cách chính xác và nhanh chóng. Để sử dụng máy tính Casio một cách hiệu quả, hãy đến với chuyên đề Kỹ Năng Sử Dụng Casio Trong Giải Toán. Chuyên đề này giới thiệu 8 kỹ năng sử dụng máy tính Casio trong việc giải các loại toán khác nhau. Các thủ thuật bao gồm: Thủ thuật sử dụng Casio để rút gọn biểu thức. Thủ thuật sử dụng Casio để giải phương trình bậc 4. Thủ thuật sử dụng Casio để tìm nghiệm phương trình. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử một ẩn. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử hai ẩn. Thủ thuật sử dụng Casio để giải hệ phương trình. Thủ thuật sử dụng Casio để tích nguyên hàm, tích phân. Thủ thuật sử dụng Casio để giải bất đẳng thức. Đến với chuyên đề này, bạn sẽ được trải nghiệm những thủ thuật đặc biệt mà máy tính Casio có thể mang lại. Hãy học ngay để nâng cao khả năng giải toán của mình và đạt được kết quả xuất sắc trong các kỳ thi.
Chuyên đề bài toán thực tế Đoàn Văn Bộ
Nội dung Chuyên đề bài toán thực tế Đoàn Văn Bộ Bản PDF - Nội dung bài viết Chuyên đề bài toán thực tế của Đoàn Văn Bộ: Phương pháp giải bài toán thông qua Bất Phương trình Bậc Nhất Hai Ẩn Chuyên đề bài toán thực tế của Đoàn Văn Bộ: Phương pháp giải bài toán thông qua Bất Phương trình Bậc Nhất Hai Ẩn Chuyên đề này bao gồm 16 trang hướng dẫn cách giải các bài toán thực tế phổ biến do tác giả Đoàn Văn Bộ biên soạn. Phương pháp giải bài toán dựa vào kiến thức về Bất Phương trình Bậc Nhất Hai Ẩn và Hệ Bất Phương trình Bậc Nhất Hai Ẩn mà nhiều giáo viên trung học phổ thông thường bỏ qua khi giảng dạy. Việc giải bài toán kinh tế thường đòi hỏi xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này thường được nghiên cứu trong lĩnh vực toán học là Quy hoạch tuyến tính. Tuy nhiên, ở cấp độ trung học phổ thông, chúng ta chỉ cần xem xét và giải những bài toán đơn giản. Ngoài ra, chuyên đề còn đề cập đến một số bài toán thực tế và lý thuyết khác như Đạo hàm, Khảo sát hàm số và các khái niệm liên quan. Hy vọng thông qua việc học chuyên đề này, các bạn sẽ tự tin giải quyết các bài toán tương tự trong đề thi THPT Quốc gia.
Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn
Nội dung Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Bản PDF - Nội dung bài viết Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Tài liệu với 298 trang này được biên soạn bởi đội ngũ giáo viên của Trung tâm luyện thi Vĩnh Viễn và bao gồm hình học Oxy – Oxyz và hình học không gian. Các nội dung chính trong cuốn sách bao gồm: Phần 1: Hình học giải tích trong mặt phẳng Oxy Bài 1: Phương pháp tọa độ trên mặt phẳng Oxy Bài 2: Đường thẳng Bài 3: Đường tròn Bài 4: Elip Bài 5: Hyperbol Bài 6: Parabol Phần 2: Hình học không gian Bài 1: Quan hệ song song Bài 2: Quan hệ vuông góc Bài 3: Các bài toán tính thể tích Phần 3: Hình học giải tích trong không gian Oxyz Bài 1: Hệ tọa độ trong không gian Bài 2: Mặt phẳng và các bài toán liên quan Bài 3: Mặt cầu Bài 4: Đường thẳng và các bài toán liên quan Cuốn sách được viết theo cấu trúc sẽ giúp học sinh hiểu được lý thuyết một cách có hệ thống và đầy đủ. Các dạng toán được phân loại và giải thích một cách dễ hiểu, đi kèm với nhiều bài tập mẫu từ dễ đến khó. Cuốn sách cũng bao gồm nhiều bài tập tự luyện được biên soạn một cách kỹ lưỡng theo đề thi tuyển sinh Đại học, với đáp án hoặc hướng dẫn giải chi tiết. Qua đó, cuốn sách sẽ giúp học sinh rèn luyện và nắm vững kiến thức hình học một cách hiệu quả để chuẩn bị tốt cho kỳ thi tuyển sinh.
Tổng hợp 14 chuyên đề luyện thi THPT Trung tâm LTĐH Diệu Hiền
Nội dung Tổng hợp 14 chuyên đề luyện thi THPT Trung tâm LTĐH Diệu Hiền Bản PDF - Nội dung bài viết Tổng hợp 14 chuyên đề luyện thi THPT - Trung tâm LTĐH Diệu Hiền Tổng hợp 14 chuyên đề luyện thi THPT - Trung tâm LTĐH Diệu Hiền Trong bộ sản phẩm này, Trung tâm LTĐH Diệu Hiền đã tổng hợp 14 chuyên đề luyện thi THPT để giúp học sinh ôn tập hiệu quả. Bộ tài liệu bao gồm các chuyên đề đa dạng, phong phú từ các môn học như Toán, Ngữ Văn, Vật Lý, Hóa Học, Sinh Học, Lịch Sử, Địa Lý, và nhiều môn khác. Thông qua việc luyện giải các đề thi trong bộ sản phẩm này, học sinh sẽ có cơ hội nắm vững kiến thức, rèn luyện kỹ năng giải đề, và chuẩn bị tốt nhất cho kỳ thi THPT sắp tới. Với cấu trúc bài tập logic, đa dạng và phong phú, bộ tài liệu này sẽ giúp học sinh tự tin hơn trong quá trình ôn tập và thi cử. Trung tâm LTĐH Diệu Hiền cam kết cung cấp cho học sinh bộ tài liệu chất lượng, uy tín và hiệu quả nhất để giúp họ đạt kết quả cao trong kỳ thi quan trọng của mình.