Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 8 học kì 2

Tài liệu gồm 219 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa, tóm tắt lí thuyết, các dạng toán và bài tập các chủ đề môn Toán 8 học kì 2. MỤC LỤC : §1 – Mở đầu về phương trình 2. A Tóm tắt lý thuyết 2. B Bài tập và các dạng toán 2. + Dạng 1. Xét xem một số cho trước có là nghiệm của phương trình hay không? 2. + Dạng 2. Xét sự tương đương của hai phương trình 4. C Bài tập về nhà 5. §2 – Phương trình bậc nhất một ẩn và cách giải 7. A Tóm tắt lý thuyết 7. B Bài tập và các dạng toán 7. + Dạng 1. Nhận dạng phương trình bậc nhất một ẩn 7. + Dạng 2. Tìm điều kiện của tham số để phương trình là phương trình bậc nhất một ẩn 8. + Dạng 3. Cách giải phương trình bậc nhất một ẩn 8. C Bài tập về nhà 11. §3 – Phương trình đưa được về dạng ax + b = 0 14. A Tóm tắt lý thuyết 14. B Bài tập và các dạng toán 14. + Dạng 1. Sử dụng các phép biến đổi thường gặp để giải một số phương trình đơn giản 14. + Dạng 2. Phương trình có chứa tham số 18. + Dạng 3. Tìm điều kiện để biểu thức chứa ẩn ở mẫu xác định 19. C Bài tập về nhà 19. §4 – Phương trình tích 22. A TÓM TẮT LÝ THUYẾT 22. B BÀI TẬP VÀ CÁC DẠNG TOÁN 22. + Dạng 1. Giải phương trình tích 22. + Dạng 2. Giải phương trình đưa về phương trình tích 24. C BÀI TẬP VỀ NHÀ 28. §5 – Phương trình chứa ẩn ở mẫu 30. A TÓM TẮT LÝ THUYẾT 30. B BÀI TẬP VÀ CÁC DẠNG TOÁN 31. + Dạng 1. Tìm điều kiện xác định của biểu thức 31. + Dạng 2. Giải phương trình chứa ẩn ở mẫu 32. C BÀI TẬP VỀ NHÀ 36. §6 – Giải bài toán bằng cách lập phương trình 38. A TÓM TẮT LÝ THUYẾT 38. B BÀI TẬP VÀ CÁC DẠNG TOÁN 38. + Dạng 1. Bài toán liên quan đến tìm số 38. + Dạng 2. Bài toán liên quan đến tỉ số phần trăm 39. + Dạng 3. Bài toán liên quan đến tỉ số phần trăm 40. + Dạng 4. Bài toán liên quan đến công việc làm chung, làm riêng 41. + Dạng 5. Bài toán liên quan đến tính tuổi 42. C BÀI TẬP VỀ NHÀ 43. §7 – ÔN TẬP CHƯƠNG III 45. A KIẾN THỨC TRỌNG TÂM 45. B CÁC DẠNG TOÁN 45. §8 – Liên hệ giữa thứ tự và phép cộng 51. A Tóm tắt lý thuyết 51. B Bài tập và các dạng toán 52. + Dạng 1. Sắp xếp thứ tự các số trên trục số. Biểu diễn mối quan hệ giữa các tập số 52. + Dạng 2. Xét tính đúng sai của khẳng định cho trước 53. + Dạng 3. So sánh 54. C Bài tập về nhà 54. §9 – Liên hệ giữa thứ tự và phép nhân 56. A Tóm tắt lý thuyết 56. B Bài tập và các dạng toán 56. + Dạng 1. Xét tính đúng sai của khẳng định cho trước 56. + Dạng 2. So sánh 57. C Bài tập về nhà 58. §10 – Bất phương trình một ẩn 59. A Tóm tắt lý thuyết 59. B Bài tập và các dạng toán 60. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình hay không? 60. + Dạng 2. Viết bằng kí hiệu tập hợp và biểu diễn tập nghiệm của bất phương trình trên trục số 61. C Bài tập về nhà 62. §11 – Bất phương trình bậc nhất một ẩn 63. A TÓM TẮT LÝ THUYẾT 63. B BÀI TẬP VÀ CÁC DẠNG TOÁN 63. + Dạng 1. Nhận dạng bất phương trình bậc nhất một ẩn 63. + Dạng 2. Giải bất phương trình 64. + Dạng 3. Biễu diển tập nghiệm trên trục số 67. + Dạng 4. Bất phương trình tương đương 69. + Dạng 5. Giải bài toán bằng cách lập phương trình 70. C Bài tập về nhà 71. §12 – Phương trình chứa dấu giá trị tuyệt đối 75. A TÓM TẮT LÝ THUYẾT 75. B BÀI TẬP VÀ CÁC DẠNG TOÁN 75. + Dạng 1. Rút gọn biểu thức chứa dấu giá trị tuyệt đối 75. + Dạng 2. Giải các phương trình chứa giá trị tuyêt đối 76. C BÀI TẬP VỀ NHÀ 85. §13 – ÔN TẬP CHƯƠNG IV 88. A Trọng tâm kiến thức 88. B Các dạng bài tập và phương pháp giải 88. + Dạng 1. Chứng minh bất đẳng thức 88. + Dạng 2. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức f(x) 89. + Dạng 3. Giải bất phương trình 90. + Dạng 4. Giải phương trình chứa dấu giá trị tuyệt đối 92. C BÀI TẬP VỀ NHÀ 103. §14 – Định lý Ta-lét 105. A Tóm tắt lý thuyết 105. B Bài tập và các dạng toán 106. + Dạng 1. Viết tỉ số các cặp đoạn thẳng hoặc tính tỉ số của hai đoạn thẳng 106. + Dạng 2. Sử dụng định lý Ta-lét để tính độ dài đoạn thẳng hoặc chứng minh đoạn thẳng tỉ lệ 107. C Bài tập về nhà 109. D BÀI TẬP TỰ LUYỆN 110. §15 – Định lý đảo và hệ quả của định lý Ta-lét 111. A Tóm tắt lý thuyết 111. B Bài tập và các dạng toán 112. + Dạng 1. Sử dụng hệ quả của định lý Ta-lét để tính độ dài đoạn thẳng 112. + Dạng 2. Sử dụng định lý Ta-lét đảo để chứng minh các đường thẳng song song 113. + Dạng 3. Sử dụng hệ quả định lý Ta-lét để chứng minh các hệ thức, các đoạn thẳng bằng nhau 114. C Bài tập về nhà 115. D BÀI TẬP TỰ LUYỆN 117. §16 – Tính chất của đường phân giác của tam giác 120. A Tóm tắt lý thuyết 120. B Bài tập và các dạng toán 121. + Dạng 1. Sử dụng tính chất đường phân giác của tam giác để tính độ dài đoạn thẳng 121. + Dạng 2. Sử dụng tính chất đường phân giác của tam giác để tính tỉ số, chứng minh các hệ thức, các đoạn thẳng bằng nhau, các đường thẳng song song 122. C Bài tập về nhà 124. D BÀI TẬP TỰ LUYỆN 126. §17 – Khái niệm hai tam giác đồng dạng 128. A Tóm tắt lý thuyết 128. B Bài tập và các dạng toán 129. + Dạng 1. Chứng minh hai tam giác đồng dạng 129. + Dạng 2. Tìm tỉ số đồng dạng, tính độ dài cạnh, chứng minh đẳng thức cạnh thông qua tam giác đồng dạng 130. C Bài tập về nhà 131. D BÀI TẬP TỰ LUYỆN 133. §18 – Trường hợp đồng dạng thứ nhất 135. A Tóm tắt lý thuyết 135. B Bài tập và các dạng toán 135. + Dạng 1. Chứng minh hai tam giác đồng dạng 135. + Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau 136. C Bài tập về nhà 137. D BÀI TẬP TỰ LUYỆN 138. §19 – Trường hợp đồng dạng thứ hai 139. A Tóm tắt lý thuyết 139. B Bài tập và các dạng toán 140. + Dạng 1. Chứng minh hai tam giác đồng dạng 140. + Dạng 2. Sử dụng trường hợp đồng dạng thứ hai để tính độ dài cạnh hoặc chứng minh các góc bằng nhau 141. C Bài tập về nhà 142. D BÀI TẬP TỰ LUYỆN 144. §20 – Trường hợp đồng dạng thứ ba 146. A Tóm tắt lý thuyết 146. B Bài tập và các dạng toán 146. + Dạng 1. Chứng minh hai tam giác đồng dạng 146. + Dạng 2. Sử dụng trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh, hoặc chứng minh các góc bằng nhau 147. C Bài tập về nhà 148. D BÀI TẬP TỰ LUYỆN 149. §21 – Các trường hợp đồng dạng của tam giác vuông 151. A Tóm tắt lý thuyết 151. B Bài tập và các dạng toán 152. + Dạng 1. Chứng minh hai tam giác vuông đồng dạng 152. + Dạng 2. Sử dụng trường hợp đồng dạng của tam giác vuông tính độ dài cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau 153. + Dạng 3. Tỉ số diện tích của hai tam giác đồng dạng 154. C Bài tập về nhà 155. D BÀI TẬP TỰ LUYỆN 156. §22 – ÔN TẬP CHƯƠNG III 158. A Tóm tắt lý thuyết 158. B Bài tập và các dạng toán 158. C Bài tập về nhà 161. D Đề kiểm tra chương III 163. §23 – Hình hộp chữ nhật 167. A Tóm tắt lý thuyết 167. B Bài tập và các dạng toán 168. + Dạng 1. Nhận biết các đỉnh, các cạnh và các mặt của hình hộp chữ nhật 168. + Dạng 2. Nhận biết vị trí tương đối của hai đường thẳng, của đường thẳng với mặt phẳng và của hai mặt phẳng của hình hộp chữ nhật 170. + Dạng 3. Tính toán các số liệu liên quan đến cạnh, mặt của hình hộp chữ nhật 171. C Bài tập về nhà 173. §24 – Thể tích của hình hộp chữ nhật 175. A Tóm tắt lý thuyết 175. B Bài tập và các dạng toán 175. + Dạng 1. Nhận biết quan hệ vuông góc giữa đường thẳng và mặt phẳng trong hình hộp chữ nhật 175. + Dạng 2. Tính thể tích hình hộp chữ nhật và các bài toán liên quan đến cạnh và mặt của hình hộp chữ nhật 176. C Bài tập về nhà 178. §25 – Hình lăng trụ đứng 179. A Tóm tắt lý thuyết 179. B Bài tập và các dạng toán 180. + Dạng 1. Xác định các đỉnh, các cạnh, các mặt và mối quan hệ giữa các cạnh với nhau của hình lăng trụ đứng 180. + Dạng 2. Tính độ dài các cạnh và các đoạn thẳng khác trong hình lăng trụ đứng 183. C Bài tập về nhà 184. §26 – Diện tích xung quanh và thể tích hình lăng trụ đứng 187. A Tóm tắt lý thuyết 187. B Bài tập và các dạng toán 187. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lăng trụ đứng 187. + Dạng 2. Một số bài toán thực tế trong cuộc sống liên quan đến lăng trụ đứng 189. C Bài tập về nhà 190. §27 – Hình chóp đều và hình chóp cụt đều 193. A Tóm tắt lí thuyết 193. B Bài tập và các dạng toán 195. + Dạng 1. Nhận biết các kiến thức cơ bản hình chóp đều 195. + Dạng 2. Tính độ dài các cạnh của hình chóp đều 196. C Bài tập về nhà 197. §28 – Diện tích xung quanh và thể tích của hình chóp đều 198. A Tóm tắt lí thuyết 198. B Bài tập và các dạng toán 199. + Dạng 1. Các bài toán về diện tích xung quanh, diện tích toàn phần và thể tích của hình chóp đều 199. + Dạng 2. Các bài toán cơ bản về mối quan hệ giữa hình lập phương, hình hộp chữ nhật với hình chóp đều 201. C Bài tập về nhà 202. §29 – Ôn tập chương 4 203. A Tóm tắt lí thuyết 203. B Bài tập và các dạng toán 203. C Bài tập về nhà 206. §30 – Đề kiểm tra chương 4 207. A Đề số 1 207. B Đề số 2 210.

Nguồn: toanmath.com

Đọc Sách

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Nội dung Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Bản PDF - Nội dung bài viết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Trên thực tế, khi chúng ta phân tích đa thức thành nhân tử, đôi khi cần phải kết hợp nhiều phương pháp để có thể phân tích triệt để. Có nhiều phương pháp thông thường mà chúng ta có thể áp dụng, bao gồm: Phương pháp ưu tiên số một: Đặt nhân tử chung. Khi sử dụng phương pháp này, chúng ta cố gắng tìm một nhân tử chung cho các hạng tử của đa thức để dễ dàng phân tích. Phương pháp ưu tiên số hai: Sử dụng hằng đẳng thức. Chúng ta có thể sử dụng hằng đẳng thức để phân tích đa thức thành nhân tử, giúp quá trình phân tích trở nên hiệu quả hơn. Nhóm các hạng tử. Khi chúng ta nhóm các hạng tử lại với nhau, việc phân tích trở nên dễ dàng hơn bằng cách đặt nhân tử chung hoặc sử dụng hằng đẳng thức. Ngoài ra, chúng ta cũng có thể áp dụng các phương pháp nâng cao khác như: Tách một hạng tử thành nhiều hạng tử. Bằng cách này, chúng ta có thể tách một hạng tử thành nhiều hạng tử để dễ dàng phân tích đa thức thành nhân tử. Thêm và bớt cùng một hạng tử. Đôi khi, chúng ta cần tăng thêm hoặc bớt đi các hạng tử để phân tích đa thức, giúp quá trình phân tích trở nên linh hoạt hơn. Đổi biến. Khi gặp đa thức phức tạp, chúng ta có thể sử dụng cách đổi biến để đơn giản hóa đa thức trước khi phân tích thành nhân tử. Thông qua việc kết hợp các phương pháp phân tích, chúng ta có thể giải quyết các bài toán phức tạp và hiệu quả hơn trong quá trình học Toán lớp 8.
Lý thuyết và bài tập chuyên đề tứ giác Nguyễn Tất Thu
Nội dung Lý thuyết và bài tập chuyên đề tứ giác Nguyễn Tất Thu Bản PDF - Nội dung bài viết Lý thuyết và bài tập chuyên đề tứ giác của thầy Nguyễn Tất Thu Lý thuyết và bài tập chuyên đề tứ giác của thầy Nguyễn Tất Thu Tài liệu này gồm 32 trang, được biên soạn bởi thầy giáo Nguyễn Tất Thu, chuyên tập trung vào lý thuyết và bài tập chuyên đề tứ giác. Được thiết kế nhằm hỗ trợ học sinh hiểu rõ hơn về chương trình Hình học 8 chương 1, bao gồm những nội dung sau: Bài 1: Tứ giác Tứ giác Tứ giác lồi Bài 2: Hình thang Hình thang Hình thang cân Đường trung bình của tam giác Đường trung bình của hình thang Bài 3: Hình bình hành Định nghĩa Tính chất Dấu hiệu nhận biết Bài 4: Hình chữ nhật Định nghĩa Tính chất Bài 5: Hình thoi Định nghĩa Tính chất Dấu hiệu nhận biết Bài 6: Hình vuông Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về tứ giác và các hình khối khác, từ đó cải thiện kỹ năng giải bài tập và hiểu rõ hơn về các vấn đề trong Hình học.
Tài liệu tự học lớp 8 môn Toán Nguyễn Chín Em
Nội dung Tài liệu tự học lớp 8 môn Toán Nguyễn Chín Em Bản PDF - Nội dung bài viết Tài liệu học tập Toán lớp 8: Sự cần thiết trong giai đoạn học tập tại nhà Tài liệu học tập Toán lớp 8: Sự cần thiết trong giai đoạn học tập tại nhà Trong thời gian học sinh lớp 8 phải ở nhà do tình hình dịch bệnh Covid-19, việc tự học trở thành một phần quan trọng để giữ cho kiến thức không bị gián đoạn. Để hỗ trợ các em trong việc tự học Toán lớp 8 tại nhà, Sytu đã biên soạn tài liệu học tập Toán lớp 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm. Tài liệu này bao gồm 483 trang với đầy đủ kiến thức và hướng dẫn giải bài tập về Đại số và Hình học. Đầu tiên, tài liệu bắt đầu với phần Đại số, bao gồm chương về phép nhân và phép chia đa thức, phân thức đại số, phương trình bậc nhất, bất phương trình bậc nhất, các phương pháp chứng minh bất đẳng thức, và cách tìm giá trị cực trị của một biểu thức. Sau đó, phần Hình học bao gồm các chương về từ giác, đa giác, diện tích đa giác, tam giác đồng dạng, hình lăng trụ đứng, mặt phẳng trong không gian, quan hệ song song và các bài toán cực trị hình học. Tài liệu này không chỉ cung cấp kiến thức mà còn hướng dẫn cách giải bài tập một cách chi tiết và dễ hiểu. Điều này giúp học sinh tự tin tự học tại nhà mà không cần sự hướng dẫn của giáo viên. Với cách biên soạn và sắp xếp rõ ràng, tài liệu tự học Toán lớp 8 của Nguyễn Chín Em sẽ giúp học sinh lớp 8 nắm vững kiến thức và hoàn thiện kỹ năng giải toán.