Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Kon Tum

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào ngày 26 tháng 01 năm 2024; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Kon Tum : + Chứng tỏ rằng đồ thị hàm số 3 2 yx x m 3 2 luôn có hai điểm cực trị và khoảng cách giữa hai điểm cực trị đó không phụ thuộc vào tham số m. + Điền ngẫu nhiên 10 số tự nhiên đầu tiên 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 vào 10 ô vuông trong bảng ở hình vẽ bên dưới (mỗi ô vuông điền đúng một số). Tính xác suất để ba ô vuông liền kề nhau bất kì có tổng ba số ghi trong ba ô vuông đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a 60o ABC. Biết SA SB SC góc hợp bởi đường thẳng SD và mặt phẳng (ABCD) là 45o. 1. Gọi N là điểm trên cạnh SD. Tìm vị trí của điểm N để đường thẳng AN hợp với mặt phẳng (ABCD) một góc 45o. 2. Gọi M là trung điểm AB, G là trọng tâm tam giác ∆SCD. Tính khoảng cách giữa hai đường thẳng AG CM theo a.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Thái Nguyên
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Thái Nguyên; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho hàm số. Tìm tất cả các giá trị thực của tham số m để hàm số nghịch biến trên R. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi M, N lần lượt là trung điểm của các cạnh SD và AD. a) Tính góc giữa đường thẳng AC và mặt phẳng (BMN). b) Mặt phẳng đi qua hai điểm B, M và song song với AC. Biết mặt phẳng cắt các cạnh SA, SC lần lượt tại hai điểm E, F. Tính khoảng cách từ điểm C đến mặt phẳng (BEMF). + Cho tam giác ABC có ba góc nhọn và AB AC (tam giác ABC không cân). Gọi O, I lần lượt là tâm đường tròn ngoại tiếp, nội tiếp của tam giác ABC. AD D BC là đường phân giác trong của BAC. Đường thẳng AD cắt đường tròn O tại điểm E E A. Đường thẳng d đi qua điểm I và vuông góc với AE cắt đường thẳng BC tại điểm K. Đường thẳng KA KE cắt đường tròn O lần lượt tại các điểm. Đường thẳng ND NI cắt đường tròn O lần lượt tại các điểm P Q P N Q N. Chứng minh rằng EQ là đường trung trực của đoạn thẳng MP.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Phú Yên
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Phú Yên Bản PDF Ngày 06 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Phú Yên; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho điểm M tùy ý nằm bên trong tam giác ABC. Gọi S1, S2, S3 lần lượt là diện tích của các tam giác MBC, MAC, MAB. Chứng minh rằng S1.MA + S2.MB + S3.MC = 0. + Trong mặt phẳng Oxy, cho parabol (P): y = x2 + px + q với q khác 0. Biết rằng (P) cắt trục Ox tại hai điểm phân biệt A, B và cắt trục Oy tại C. Chứng minh rằng khi p và q thay đổi, đường tròn ngoại tiếp tam giác ABC luôn đi qua một điểm cố định. + Cho hệ phương trình. Tìm tất cả các giá trị của a và b để hệ phương trình có nghiệm duy nhất.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Cà Mau
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Cà Mau Bản PDF Ngày 04 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Cà Mau; đề gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau : + Trong mặt phẳng Oxy cho tam giác ABC có đỉnh A(1;2), đường trung tuyến và đường phân giác trong hạ từ đỉnh B lần lượt có phương trình d: 2x – 3y = 2, d1: 9x – 3y = 16. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a. Biết SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính số đo góc giữa đường thẳng SB và mặt phẳng (ABCD) khi x = a. b) Tính x theo a sao cho tích AC.SD lớn nhất. + Cho đa giác đều có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của (H). Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật nhưng không phải là hình vuông.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Phước
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Phước Bản PDF Ngày 15 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Phước; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Phước : + Cho tập T = {1; 2; 3; 4; 5}. Gọi H là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số đôi một khác nhau thuộc T. Chọn ngẫu nhiên một số thuộc H. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm BC và CD. Gọi H là giao điểm của BN và AM. Viết phương trình đường tròn ngoại tiếp tam giác HDN biết phương trình đường thẳng BN: 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi H là trung điểm AB. Tính thể tích khối chóp S.ABCD và tan (SH;(SCD)).