Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vở bài tập Toán 9 tập 2 phần Đại số

Tài liệu gồm 222 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 2 phần Đại số. CHƯƠNG 3 . HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Bài 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Nhận biết hàm số bậc nhất y = ax + b. Dạng 2: Kiểm tra các cặp số cho trước có là nghiệm của phương trình bậc nhất hai ẩn không? Dạng 3: Tìm một nghiệm của phương trình bậc nhất hai ẩn. Dạng 4: Viết nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của phương trình. Dạng 5: Tìm điều kiện của tham số để đường thẳng đi qua một điểm cho trước. Dạng 6: Vẽ cặp đường thẳng và tìm giao điểm của chúng. Bài 2. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Kiểm tra cặp số cho trước có là nghiệm của hệ phương trình đã cho hay không? Dạng 2: Đoán nhận số nghiệm của hệ phương trình. Dạng 3: Tìm nghiệm của hệ bằng phương pháp hình học. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Dạng 5: Vị trí tương đối của hai đường thẳng. Bài 3. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 3: Sử dụng đặt ẩn phụ giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ. Dạng 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Dạng 3: Giải phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 5. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán về chuyển động. Bài 6. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH (TT). Dạng 1: Bài toán về công việc làm chung và làm riêng. Dạng 2: Bài toán về năng suất lao động. Dạng 3: Bài toán về tỉ lệ phần trăm. Dạng 4: Bài toán về nội dung hình học. Dạng 5: Bài toán về nội dung sắp xếp chia đều. ÔN TẬP CHƯƠNG III. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 2. CHƯƠNG 4 . HÀM SỐ Y = AX2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Bài 1. HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Tính giá trị của hàm số tại một điểm cho trước. Dạng 2: Xét tính đồng biến, nghịch biến của hàm số. Bài 2. ĐỒ THỊ CỦA HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Vẽ đồ thị hàm số. Dạng 2: Tọa độ giao điểm của Parabol và đường thẳng. Bài 3. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Dạng 1: Nhận dạng và tìm hệ số của phương trình bậc hai một ẩn. Dạng 2: Sử dụng các phép biến đổi, giải phương trình bậc hai một ẩn cho trước. Bài 4. CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Sử dụng công thức nghiệm để giải phương trình bậc hai một ẩn cho trước. Dạng 2: Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Dạng 4: Một số bài toán về tính số nghiệm của phương trình bậc hai. Bài 5. CÔNG THỨC NGHIỆM THU GỌN. Dạng 1: Sử dụng công thức nghiệm thu gọn, giải phương trình bậc hai. Dạng 2: Sử dụng công thức nghiệm thu gọn, xác định số nghiệm của phương trình bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Bài 6. HỆ THỨC VI-ÉT VÀ ỨNG DỤNG. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng cách nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích của chúng. Dạng 4: Phân tích tam giác bậc hai thành nhân tử. Dạng 5: Xét dấu các nghiệm của phương trình bậc hai. Dạng 6: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Bài 7. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Giải phương trình trùng phương. Dạng 2: Giải phương trình chứa ẩn ở mẫu. Dạng 3: Giải phương trình tích. Dạng 4: Giải phương trình bằng phương pháp đặt ẩn phụ. Bài 8. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Toán có nội dung hình học. Dạng 2: Bài toán có quan hệ về số. Dạng 3: Bài toán về năng suất lao động. Dạng 4: Bài toán về công việc làm chung, làm riêng. Dạng 5: Bài toán về chuyển động. Dạng 6: Bài toán chuyển động có vận tốc cản. Dạng 7: Các dạng toán khác. ÔN TẬP CHƯƠNG IV. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 2.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa cung và dây
Nội dung Chuyên đề liên hệ giữa cung và dây Bản PDF - Nội dung bài viết Chuyên đề liên hệ giữa cung và dây Chuyên đề liên hệ giữa cung và dây Tài liệu này bao gồm 12 trang, đã được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức chính, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm về chuyên đề liên hệ giữa cung và dây. Đây là nguồn tư liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 2. I. Tóm tắt lý thuyết 1. Định lí 1: Hai cung nhỏ trong cùng một đường tròn hoặc trong hai đường tròn bằng nhau, thì hai cung bằng nhau căng hai dây bằng nhau. 2. Định lí 2: Hai cung nhỏ trong cùng một đường tròn hoặc trong hai đường tròn bằng nhau, thì cung lớn hơn căng dây lớn hơn. 3. Bổ sung: Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. Đường kính đi qua trung điểm của một cung thì đi qua trung điểm của dây căng cung ấy. Đường kính cũng đảm bảo góc vuông giữa dây và cung. II. Bài tập minh họa Phương pháp giải: Để giải các bài toán liên quan đến cung và dây, cần hiểu rõ định nghĩa góc ở tâm và sự liên hệ giữa cung và dây. III. Bài tập tự luyện Tiếp tục làm các bài tập để củng cố kiến thức và kỹ năng giải quyết vấn đề liên quan đến chuyên đề liên hệ giữa cung và dây.
Chuyên đề góc ở tâm, số đo cung
Nội dung Chuyên đề góc ở tâm, số đo cung Bản PDF - Nội dung bài viết Chuyên Đề Góc Ở Tâm, Số Đo CungTóm Tắt Lý Thuyết:Bài Tập Minh Họa:Phiếu Bài Tự Luyện: Chuyên Đề Góc Ở Tâm, Số Đo Cung Tài liệu này gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề góc ở tâm, số đo cung. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. Tóm Tắt Lý Thuyết: Góc ở tâm Số đo cung So sánh hai cung Định lí Bài Tập Minh Họa: Phương pháp giải bài tập trong tài liệu này giúp học sinh tính số đo của góc ở tâm và số đo của cung bị chắn. Một số kiến thức quan trọng bao gồm: Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ Số đo của nửa đường tròn là 180 độ Cung cả đường tròn có số đo 360 độ Sử dụng tỉ số lượng giác của một góc để tính góc Sử dụng quan hệ đường kính và dây cung Phiếu Bài Tự Luyện: Tài liệu cung cấp phiếu bài tập tự luyện để học sinh tự kiểm tra và củng cố kiến thức sau khi học xong phần lý thuyết và bài tập minh họa.
Chuyên đề vị trí tương đối của hai đường tròn
Nội dung Chuyên đề vị trí tương đối của hai đường tròn Bản PDF - Nội dung bài viết Chuyên đề vị trí tương đối của hai đường trònKIẾN THỨC TRỌNG TÂMCÁC DẠNG BÀI MINH HỌATRẮC NGHIỆM RÈN PHẢN XẠ Chuyên đề vị trí tương đối của hai đường tròn Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm tổng cộng 36 trang. Nó tập trung vào kiến thức quan trọng về vị trí tương đối của hai đường tròn và cung cấp hướng dẫn chi tiết để giải các dạng bài tập tự luận & trắc nghiệm trong chương trình Hình học lớp 9, chương 2 bài số 7 và bài số 8. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm: - Đường nối tâm là trục đối xứng của hình tạo bởi hai đường tròn. - Nếu hai đường tròn tiếp xúc nhau, tiếp điểm sẽ nằm trên đường nối tâm. - Nếu hai đường tròn cắt nhau, đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm và bán kính: - Hai đường tròn có thể cắt nhau, tiếp xúc nhau hoặc không giao nhau. - Trường hợp tiếp xúc nhau có thể là tiếp xúc ngoài hoặc tiếp xúc trong. - Trường hợp không giao nhau có thể hai đường tròn ở ngoài nhau, một đường tròn đựng đường tròn khác hoặc hai đường tròn đồng tâm. CÁC DẠNG BÀI MINH HỌA - Dạng 1: Nhận biết vị trí tương đối của hai đường tròn. - Dạng 2: Bài tập về hai đường tròn cắt nhau. - Dạng 3: Bài tập về hai đường tròn tiếp xúc. TRẮC NGHIỆM RÈN PHẢN XẠ Ngoài ra, tài liệu cũng cung cấp bài tập tự luyện để học sinh rèn luyện kỹ năng giải các bài toán liên quan đến vị trí tương đối của hai đường tròn.
Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Nội dung Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Bản PDF - Nội dung bài viết Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường trònTóm tắt lý thuyếtBài tập và các dạng toánTrắc nghiệm rèn phản xạ Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Tài liệu này bao gồm 28 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn. Hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. Tóm tắt lý thuyết Dấu hiệu 1: Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng đó là một tiếp tuyến của đường tròn. Dấu hiệu 2: Theo định nghĩa tiếp tuyến. Bài tập và các dạng toán Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải có thể làm theo các cách như chứng minh điểm tiếp xúc nằm trên đường tròn và vuông góc với đường thẳng, hoặc kẻ đoạn vuông góc từ tâm đến điểm tiếp xúc và chứng minh bằng tính chất vuông góc. Dạng 2: Tính độ dài. Sử dụng định lý và công thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3: Bài toán tổng hợp. Trắc nghiệm rèn phản xạ Sau khi học lý thuyết và làm bài tập, học sinh có thể rèn luyện kỹ năng phản xạ qua việc làm các câu hỏi trắc nghiệm để kiểm tra hiểu biết và áp dụng kiến thức.