Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vở bài tập Toán 9 tập 2 phần Đại số

Tài liệu gồm 222 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 2 phần Đại số. CHƯƠNG 3 . HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Bài 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Nhận biết hàm số bậc nhất y = ax + b. Dạng 2: Kiểm tra các cặp số cho trước có là nghiệm của phương trình bậc nhất hai ẩn không? Dạng 3: Tìm một nghiệm của phương trình bậc nhất hai ẩn. Dạng 4: Viết nghiệm tổng quát và vẽ đường thẳng biểu diễn tập nghiệm của phương trình. Dạng 5: Tìm điều kiện của tham số để đường thẳng đi qua một điểm cho trước. Dạng 6: Vẽ cặp đường thẳng và tìm giao điểm của chúng. Bài 2. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1: Kiểm tra cặp số cho trước có là nghiệm của hệ phương trình đã cho hay không? Dạng 2: Đoán nhận số nghiệm của hệ phương trình. Dạng 3: Tìm nghiệm của hệ bằng phương pháp hình học. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Dạng 5: Vị trí tương đối của hai đường thẳng. Bài 3. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 3: Sử dụng đặt ẩn phụ giải hệ phương trình quy về phương trình bậc nhất hai ẩn. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ. Dạng 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Dạng 3: Giải phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Bài 5. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán về chuyển động. Bài 6. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH (TT). Dạng 1: Bài toán về công việc làm chung và làm riêng. Dạng 2: Bài toán về năng suất lao động. Dạng 3: Bài toán về tỉ lệ phần trăm. Dạng 4: Bài toán về nội dung hình học. Dạng 5: Bài toán về nội dung sắp xếp chia đều. ÔN TẬP CHƯƠNG III. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 – ĐỀ SỐ 2. CHƯƠNG 4 . HÀM SỐ Y = AX2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Bài 1. HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Tính giá trị của hàm số tại một điểm cho trước. Dạng 2: Xét tính đồng biến, nghịch biến của hàm số. Bài 2. ĐỒ THỊ CỦA HÀM SỐ Y = AX2 (A KHÁC 0). Dạng 1: Vẽ đồ thị hàm số. Dạng 2: Tọa độ giao điểm của Parabol và đường thẳng. Bài 3. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. Dạng 1: Nhận dạng và tìm hệ số của phương trình bậc hai một ẩn. Dạng 2: Sử dụng các phép biến đổi, giải phương trình bậc hai một ẩn cho trước. Bài 4. CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Sử dụng công thức nghiệm để giải phương trình bậc hai một ẩn cho trước. Dạng 2: Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Dạng 4: Một số bài toán về tính số nghiệm của phương trình bậc hai. Bài 5. CÔNG THỨC NGHIỆM THU GỌN. Dạng 1: Sử dụng công thức nghiệm thu gọn, giải phương trình bậc hai. Dạng 2: Sử dụng công thức nghiệm thu gọn, xác định số nghiệm của phương trình bậc hai. Dạng 3: Giải và biện luận phương trình dạng bậc hai. Bài 6. HỆ THỨC VI-ÉT VÀ ỨNG DỤNG. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng cách nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích của chúng. Dạng 4: Phân tích tam giác bậc hai thành nhân tử. Dạng 5: Xét dấu các nghiệm của phương trình bậc hai. Dạng 6: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Bài 7. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. Dạng 1: Giải phương trình trùng phương. Dạng 2: Giải phương trình chứa ẩn ở mẫu. Dạng 3: Giải phương trình tích. Dạng 4: Giải phương trình bằng phương pháp đặt ẩn phụ. Bài 8. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. Dạng 1: Toán có nội dung hình học. Dạng 2: Bài toán có quan hệ về số. Dạng 3: Bài toán về năng suất lao động. Dạng 4: Bài toán về công việc làm chung, làm riêng. Dạng 5: Bài toán về chuyển động. Dạng 6: Bài toán chuyển động có vận tốc cản. Dạng 7: Các dạng toán khác. ÔN TẬP CHƯƠNG IV. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 1. ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ SỐ 2.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 36 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Hệ thức Viét. 2. Ứng dụng của hệ thức Viét. B. Bài tập. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích. Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Dạng 6: Tìm GTLN – GTNN của biểu thức. Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề phương trình quy về phương trình bậc hai
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình quy về phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Phương trình trùng phương: Phương trình trùng phương là phương trình có dạng: 4 2 ax bx c a 0. Cách giải: Đặt ẩn phụ 2 t xt 0 để đưa phương trình về phương trình bậc hai: 2 at bt c a 0. 2. Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức ta làm theo các bước sau: + Bước 1: Tìm điều kiện xác định của ẩn của phương trình. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được ở bước 2. + Bước 4: So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. 3. Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có thể thực hiện theo các bước sau: + Bước 1: Phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. B. Bài tập và các dạng toán. I. Phương trình không chứa tham số. + Dạng 1: Giải phương trình trùng phương. + Dạng 2: Phương trình chứa ẩn ở mẫu thức. + Dạng 3: Phương trình đưa về dạng tích. + Dạng 4: Giải bằng phương pháp đặt ẩn phụ. + Dạng 5: Phương trình chứa căn thức. + Dạng 6: Một số dạng khác. II. Phương trình chứa tham số. + Dạng 1: Phương trình bậc ba đưa được về dạng tích 2 x k ax bx c 0. + Dạng 2: Phương trình trùng phương. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề bài toán về đường thẳng và parabol
Tài liệu gồm 08 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề bài toán về đường thẳng và parabol trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. Cho đường thẳng d y mx n và Parabol P y ax a 0. Khi đó số giao điểm của d và P bằng đúng số nghiệm của phương trình hoành độ giao điểm 2 ax mx n. Ta có bảng sau: Số giao điểm của d và (P) Biệt thức ∆ của phương trình hoành độ giao điểm của d và (P) Vị trí tương đối của d và (P). 0 ∆ 0 d không cắt P. 1 ∆ 0 d tiếp xúc với P. 2 ∆ 0 d cắt P tại hai điểm phân biệt. B. Bài tập.
Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.