Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 10 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc

Ngày 24 tháng 05 năm 2020, trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia lần thứ hai năm học 2019 – 2020 dành cho học sinh khối lớp 10. Đề KSCL Toán 10 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc có mã đề 123, đề thi có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 10 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc : + Cho đoạn thẳng AB có độ dài 2a và số k2. Tập hợp các điểm M thỏa mãn đẳng thức MA.MB = k2 là? A. Đường tròn đường kính AB. B. Đường tròn tâm là trung điểm của AB và bán kính bằng k2 + a2. C. Đường trung trực của đoạn thẳng AB. D. Đường tròn tâm là trung điểm của AB và bán kính bằng √(k2 + a2). + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây), kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó ở độ cao 6m. [ads] + Cho tam giác ABC. Khi đó vị trí của điểm M để biểu thức MA.MB + MB.MC + MC.MA đạt giá trị nhỏ nhất là? A. Tâm đường tròn ngoại tiếp tam giác ABC. B. Tâm đường tròn nội tiếp tam giác ABC. C. Trực tâm tam giác ABC. D. Trọng tâm tam giác ABC. + Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB bằng 70m, phương nhìn AC tạo với phương nằm ngang góc 30 độ, phương nhìn BC tạo với phương nằm ngang góc 15 độ 30 phút. Khi đó chiều cao của ngọn núi so với mặt đất (làm tròn đến hàng đơn vị) bằng? + Từ đồ thị hàm số y = x^2 – 4x + 3 ta thực hiện những bước biến đổi sau để được đồ thị hàm số y = x^2 – 6x + 5. A. Tịnh tiến sang phải 1 đơn vị và tịnh tiến xuống dưới 3 đơn vị. B. Tịnh tiến sang trái 1 đơn vị và tịnh tiến lên trên 4 đơn vị. C. Đối xứng qua trục Ox và tịnh tiến sang trái 1 đơn vị. D. Đối xứng qua trục Oy và tịnh tiến lên trên 3 đơn vị.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL đội tuyển HSG Toán 10 năm 2018 - 2019 trường Yên Lạc 2 - Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 10 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 10 nằm trong đội tuyển học sinh giỏi Toán 10 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán 10 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán 10 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 10 bài toán, bao quát toàn diện các kiến thức Toán 10 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. [ads] Trích dẫn đề KSCL đội tuyển HSG Toán 10 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho tam giác ABC đều cạnh 3a. Lấy các điểm M, N lần lượt trên các cạnh BC, CA sao cho BM = a, CN = 2a. Gọi P là điểm nằm trên cạnh AB sao cho AM vuông góc với PN. Tính độ dài PN theo a. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có BC = 2AB, phương trình đường trung tuyến xuất phát từ đỉnh B là d: x + y – 2 = 0. Biết góc ABC = 120 độ và A(3;1). Tìm tọa độ các đỉnh còn lại của tam giác. + Cho hàm số y = x^2 + 2mx – 3m và hàm số y = -2x + 3. Tìm m để hai đồ thị đã cho cắt nhau tại hai điểm phân biệt A và B sao cho AB = 4√5.
Đề KSCL đội tuyển HSG Toán 10 năm 2020 - 2021 trường Liễn Sơn - Vĩnh Phúc
Đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2020 – 2021 trường THPT Liễn Sơn, tỉnh Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL đội tuyển HSG Toán 10 năm 2020 – 2021 trường Liễn Sơn – Vĩnh Phúc : + Cho tam giác đều ABC. Điểm M thay đổi nằm trong đoạn AB (M khác A và B). Gọi H, K tương ứng là hình chiếu vuông góc của M trên các đoạn BC và AC; G là trọng tâm của tam giác MHK. Chứng minh rằng đường thẳng MG luôn đi qua một điểm cố định. + Cho phương trình. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm thực. + Tìm tất cả các giá trị của tham số m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ thỏa mãn.
Đề KSCL HSG lần 2 Toán 10 năm 2023 - 2024 trường THPT Lê Xoay - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng học sinh giỏi lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT Lê Xoay, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 147 – 260 – 347 – 442 – 575 – 696. Trích dẫn Đề KSCL HSG lần 2 Toán 10 năm 2023 – 2024 trường THPT Lê Xoay – Vĩnh Phúc : + Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a b là? + Trong kỳ thi tốt nghiệp phổ thông, ở một trường kết quả số thí sinh đạt danh hiệu xuất sắc như sau: Về môn Toán: 48 thí sinh; Về môn Vật lý: 37 thí sinh; Về môn Văn: 42 thí sinh; Về môn Toán hoặc môn Vật lý: 75 thí sinh; Về môn Toán hoặc môn Văn: 76 thí sinh; Về môn Vật lý hoặc môn Văn: 66 thí sinh; Về cả 3 môn: 4 thí sinh. Hỏi có bao nhiêu học sinh nhận được danh hiệu xuất sắc ít nhất một môn? + Trong mặt phẳng tọa độ Oxy cho điểm A(2;1). Lấy điểm B nằm trên trục hoành có hoành độ không âm và điểm C trên trục tung có tung độ dương sao cho tam giác ABC vuông tại A. Tìm toạ độ B C để tam giác ABC có diện tích lớn nhất.
Đề KSCL lần 1 năm học 2017 - 2018 môn Toán 10 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Đề KSCL lần 1 năm học 2017 – 2018 môn Toán 10 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Lớp 10A có 16 học sinh giỏi môn Toán, 15 học sinh giỏi môn Lý và 11 học sinh giỏi môn Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lý, 6 học sinh vừa giỏi Lý và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó chỉ có 11 học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp giỏi cả ba môn Toán, Lý, Hóa A. 4 B. 7 C. 8 D. 5 [ads] + Cho hàm số y = f(x) có tập xác định là [-3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số đồng biến trên khoảng (-3; 3) B. Hàm số đồng biến trên khoảng (-3; -1) và (1; 3) C. Hàm số đồng biến trên khoảng (-3; -1) và (1; 4) D. Hàm số nghịch biến trên khoảng (-1; 0) + Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai? A. ABC là tam giác đều ⇔ Tam giác ABC cân và có một góc 60 độ B. ABC là tam giác đều ⇔ Tam giác ABC có hai góc bằng 60 độ C. ABC là tam giác đều ⇔ Tam giác ABC cân D. ABC là tam giác đều ⇔ ABC là tam giác có ba cạnh bằng nhau