Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 05 đề thi cuối học kỳ 1 môn Toán 10 Cánh Diều cấu trúc trắc nghiệm mới

Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập 05 đề thi cuối học kỳ 1 môn Toán 10 chương trình SGK Cánh Diều, dựa theo cấu trúc trắc nghiệm mới do Bộ Giáo dục và Đào tạo công bố. Đề thi gồm 03 phần: phần 1: trắc nghiệm nhiều phương án lựa chọn, phần 2: trắc nghiệm đúng sai, phần 3: trắc nghiệm trả lời ngắn; thời gian học sinh làm bài thi là 90 phút. Trích dẫn Tuyển tập 05 đề thi cuối học kỳ 1 môn Toán 10 Cánh Diều cấu trúc trắc nghiệm mới: + Vòng xoay ở một ngã bảy là một hình tròn, ở giữa người ta thiết kế một bồn hoa hình tam giác như hình vẽ, phần còn lại trồng cỏ. Dựa trên các số liệu đo được, em hãy tính diện tích phần trồng cỏ (kết quả chính xác đến số nguyên liền trước gần nhất). + Một xưởng cơ khí có hai công nhân là Thái và Bình. Xưởng sản xuất loại sản phẩm I và II. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Thái phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Bình phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Thái không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Tính số tiền lãi lớn nhất trong một tháng của xưởng (kết quả làm tròn số nguyên gần nhất). + Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Công suất của dây chuyền 1 là 45 radio/ngày và dây chuyền 2 là 80 radio/ngày. Để sản xuất một chiếc radio kiểu 1 cần 12 linh kiện điện tử, với kiểu 2 cần 9 linh kiện điện tử, và một chiếc radio kiểu này được cung cấp mỗi ngày không vượt quá 900. Tiễn lãi khi bán một chiếc radio kiểu 1 là 250000 đồng và kiểu 2 là 180000 đồng. Giả sử trong một ngày công ty sản xuất a linh kiện kiểu 1 và b linh kiện kiểu 2 thì lợi nhuận thu được cao nhất. Tính 2a + 3b.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Thanh Miện Hải Dương
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Thanh Miện Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối 10 đề thi học kỳ 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương, kỳ thi nhằm giúp nhà trường nắm rõ chất lượng dạy và học môn Toán lớp 10 của giáo viên và học sinh trong học kỳ vừa qua. Đề thi học kỳ 1 Toán lớp 10 năm 2019 – 2020 trường Thanh Miện – Hải Dương gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề thi học kỳ 1 Toán lớp 10 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Cho hàm số y = x^3 + x, mệnh đề nào sau đây đúng? A. Hàm số đã cho là hàm số lẻ. B. Hàm số đã cho là hàm số chẵn. C. Hàm số đã cho không là hàm số chẵn, không là hàm số lẻ. D. Hàm số đã cho vừa là hàm số chẵn, vừa là hàm số lẻ. + Cho hai điểm B, C phân biệt. Tập hợp những điểm M thỏa mãn CM.CB = CM^2 là: A. đường tròn đường kính BC. B. đường tròn tâm B bán kính BC. C. đường tròn tâm C bán kính BC. D. đường thẳng vuông góc với BC tại B. [ads] + Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức |2MA + 3MB + 4MC| = |MB – MA| là đường tròn cố định có bán kính R. Tính bán kính R theo a. + Cho hệ phương trình x + y = 2 và x^2.y + y^2.x = 4m^2 – 2m. Tìm tập hợp tất cả các giá trị của m để hệ phương trình trên có nghiệm. + Khẳng định nào sau đây là sai? A. ka và a cùng hướng khi k > 0. B. ka và a cùng hướng khi k < 0. C. Hai vectơ a và b khác 0 cùng phương khi có một số k để a = kb. D. 1.a = a.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Dương Quảng Hàm Hưng Yên
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Dương Quảng Hàm Hưng Yên Bản PDF Sáng thứ Năm ngày 19 tháng 12 năm 2019, trường THPT Dương Quảng Hàm, tỉnh Hưng Yên tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK1 Toán lớp 10 năm học 2019 – 2020 trường THPT Dương Quảng Hàm – Hưng Yên (mã đề 001 và mã đề 126) gồm có 06 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp tự luận, phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 05 câu, chiếm 40% tổng số điểm, học sinh có 90 phút để hoàn thành bài thi HKI Toán lớp 10, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường Dương Quảng Hàm – Hưng Yên : + Cho hệ phương trình (I): ax + by = c (1) và a’x + b’y = c’ (2) với phương trình (1) và (2) là phương trình bậc nhất hai ẩn. Hãy chọn khẳng định đúng. A. Giải hệ (I) là tìm một nghiệm chung của phương trình (1) và (2). B. Nghiệm chung của phương trình (1) và (2) được gọi là nghiệm của hệ (I). C. Phương trình (1) và (2) có vô số nghiệm nên hệ (I) có vô số nghiệm. D. Nếu phương trình (1) và (2) có nghiệm chung thì nghiệm chung đó phải là (0;0). [ads] + Trong các mệnh đề sau, mệnh đề nào là mệnh đề phủ định của mệnh đề “Vẫn còn có học sinh trường THPT Dương Quảng Hàm đi xe đạp điện không đội mũ bảo hiểm”. A. Không có học sinh nào của trường THPT Dương Quảng Hàm đi xe đạp điện đội mũ bảo hiểm. B. Có học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đội mũ bảo hiểm. C. Mọi học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đều đội mũ bảo hiểm. D. Mọi học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đều không đội mũ bảo hiểm. + Khách sạn A có 50 phòng. Mỗi phòng cho thuê với giá 400.000đ thì khách sạn kín phòng. Biết nếu cứ mỗi lần tăng giá thuê một phòng 20.000đ thì khách sạn có thêm 2 phòng trống. Bạn hãy giúp Giám đốc khách sạn A chọn giá phòng mới đề thu nhập của khách sạn trong ngày là lớn nhất. File WORD (dành cho quý thầy, cô):
Đề thi HKI lớp 10 môn Toán năm 2019 2020 trường THPT Tân Phú Trung Đồng Tháp
Nội dung Đề thi HKI lớp 10 môn Toán năm 2019 2020 trường THPT Tân Phú Trung Đồng Tháp Bản PDF Thứ Ba ngày 24 tháng 12 năm 2019, trường THPT Tân Phú Trung – Đồng Tháp tổ chức kỳ thi kiểm tra chất lượng học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HKI Toán lớp 10 năm 2019 – 2020 trường THPT Tân Phú Trung – Đồng Tháp được biên soạn theo hình thức tự luận, đề gồm 01 trang với 06 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Ma trận đề thi HKI Toán lớp 10 năm 2019 – 2020 trường THPT Tân Phú Trung – Đồng Tháp: [ads] Trích dẫn đề thi HKI Toán lớp 10 năm 2019 – 2020 trường THPT Tân Phú Trung – Đồng Tháp: + Một cửa hàng bán giày. Ngày thứ nhất bán được 15 đôi giày hiệu Nike, 24 đôi giày hiệu Adidas, doanh thu là 12.900.000 đồng. Ngày thứ hai cửa hàng bán được 21 đôi giày hiệu Nike và 35 đôi giày hiệu Adidas, doanh thu là 18.550.000 đồng. Hỏi giá bán mỗi đôi giày hiệu Nike và Adidas là bao nhiêu? + Một cửa hàng sách mua sách từ nhà xuất bản với giá 3 nghìn đồng/cuốn. Cửa hàng bán với giá 15 nghìn đồng/cuốn, với giá bán này thì mỗi tháng cửa hàng bán được 200 cuốn. Cửa hàng có chính sách giảm giá để kích thích sức mua, họ ước tính rằng cứ mỗi 1 nghìn đồng mà giảm đi trong giá bán thì mỗi tháng sẽ bán được nhiều hơn 20 cuốn. Hỏi cửa hàng sẽ bán loại sách trên với bao nhiêu thì doanh thu mỗi tháng của cửa hàng là lớn nhất? + Xác định các hệ số a, b của parabol y = ax^2 + bx – 3 biết rằng parabol đi qua điểm A(5;-8) và có trục đối xứng x = 2. File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường chuyên Thăng Long Lâm Đồng
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường chuyên Thăng Long Lâm Đồng Bản PDF Ngày … tháng 12 năm 2019, trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng tổ chức kì thi kiểm tra khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng mã đề 181 gồm có 4 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp tự luận theo tỉ lệ điểm 70 : 30. phần trắc nghiệm gồm 35 câu, phần tự luận gồm 3 câu, học sinh có 90 phút để hoàn thành bài thi học kì, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng : + Cho ba điểm M, N, P bất kỳ thỏa mãn đẳng thức MN = 3MP. Chọn khẳng định sai trong các khẳng định sau: A. Vectơ MN và vectơ PN cùng phương. B. Điểm P nằm giữa hai điểm M và N. C. Ba điểm M, N, P là 3 đỉnh của một tam giác. D. Ba điểm M, N, P thẳng hàng. + Một số tự nhiên có hai chữ số. Nếu lấy số đó trừ đi hai lần tổng các chữ số của nó thì được kết quả là 51. Nếu lấy hai lần chữ số hàng chục cộng với ba lần chữ số hàng đơn vị thì được kết quả là 29. Hỏi số tự nhiên ấy có giá trị thuộc khoảng nào trong các khoảng sau? [ads] + Một cửa hàng buôn giày nhập một đôi giày với giá là 40 đôla. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x đôla thì mỗi tháng khách hàng sẽ mua (120 − x) đôi. Hỏi cửa hàng bán một đôi giày với giá bao nhiêu thì sẽ thu lãi nhiều nhất? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có các đỉnh A(−4;1), B(2;4), C(2;-2). a. Chứng minh rằng tam giác ABC cân tại A. b. Tìm tọa độ trực tâm H của tam giác ABC. + Cho đường thẳng d: y = 2x + 2020, đường thẳng d’ song song với đường thẳng d và đi qua điểm M(0;3). Phương trình đường thẳng d’ là? File WORD (dành cho quý thầy, cô):