Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 7 năm 2022 - 2023 phòng GDĐT Thanh Thủy - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo Thanh Thủy, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm (16 câu – 08 điểm) kết hợp 60% tự luận (04 câu – 12 điểm), thời gian 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh năng khiếu Toán 7 năm 2022 – 2023 phòng GD&ĐT Thanh Thủy – Phú Thọ : + Có 2 hộp bút chì màu. Hộp thứ nhất có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác xuất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là? + Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D sao cho BD CD trên tia đối của tia CB lấy điểm E sao cho BD CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt các đường thẳng AB và AC lần lượt ở M và N. a) Chứng minh rằng: BM CN. b) Gọi K là giao điểm của BC và MN. Chứng minh K là trung điểm của MN. c) Từ K kẻ đường thẳng d vuông góc với MN.Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC. + Một cửa hàng có ba tấm vải dài tổng cộng 144m. Nếu cắt ở tấm thứ nhất đi 1 3 số vải; cắt ở tấm thứ hai đi 1 7 số vải và cắt ở tấm thứ ba đi 1 4 số vải thì số mét vải còn lại ở ba tấm bằng nhau. Tổng số mét vải của hai tấm thứ nhất và thứ hai khi chưa cắt là?

Nguồn: toanmath.com

Đọc Sách

Đề KĐCL mũi nhọn Toán 7 năm 2023 - 2024 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi kiểm định chất lượng mũi nhọn môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Trích dẫn Đề KĐCL mũi nhọn Toán 7 năm 2023 – 2024 phòng GD&ĐT Nam Đàn – Nghệ An : + Ba lớp 7A, 7B, 7C cùng mua một số bút bi để ủng hộ cho các bạn vùng cao, lúc đầu số bút bi dự định chia cho 3 lớp 7A, 7B, 7C lần lượt tỷ lệ với 5 : 6 : 7 nhưng sau đó lại chia theo tỷ lệ 4 : 5 : 6 nên có một lớp nhận mua nhiều hơn lúc đầu 5 cái. Hãy tính tổng số bút bi mà ba lớp đã mua để ủng hộ cho các bạn vùng cao. + Tìm số tự nhiên có 2 chữ số biết rằng nhân số đó với 135 ta được một số chính phương. + Cho tam giác vuông tại A (AB > AC), vẽ phân giác CE (E thuộc AB). Trên cạnh BC lấy điểm H sao cho CH = CA. Gọi N là giao điểm của AH và CE. a) Chứng minh N là trung điểm của AH. b) Gọi D là trung điểm NH. Đường thẳng qua D vuông góc với NH tại D cắt EH tại K. Chứng minh NK song song với AB. c) Trên cạnh AH lấy các điểm I và Q sao cho AI = IQ = QH. So sánh hai góc ACI và ICQ.
Đề chọn HS năng khiếu Toán 7 năm 2023 - 2024 phòng GDĐT Tân Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Sơn, tỉnh Phú Thọ; đề thi gồm 02 trang, hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút. Trích dẫn Đề chọn HS năng khiếu Toán 7 năm 2023 – 2024 phòng GD&ĐT Tân Sơn – Phú Thọ : + Cho tam giác ABC cân tại A (AB BC). Gọi N là trung điểm của AC, qua N kẻ đường thẳng vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm F sao cho AF BM. a) Chứng minh: MAC ABC. b) Chứng minh: AM CF. c) Lấy điểm D trên cạnh AC điểm E trên cạnh AB sao cho AD AE. + Gieo ngẫu nhiên xúc xắc (6 mặt) một lần. Gọi a b là xác xuất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia hết cho 3”. Giá trị biểu thức 2023a b là? + Cho p là số nguyên tố lớn hơn 3, biết p 2 cũng là số nguyên tố. Chứng minh rằng: p + 7 là bội của 6.
Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Lệ Thủy - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lệ Thủy, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Lệ Thủy – Quảng Bình : + Ba đội máy cày trên ba cánh đồng có diện tích như nhau. Đội I hoàn thành công việc trong 6 ngày, đội II hoàn thành công việc trong 5 ngày, đội III hoàn thành công việc trong 3 ngày. Biết rằng đội I ít hơn đội II đúng 1 máy cày. Hỏi mỗi đội có bao nhiêu máy cày? + Cho ∆ABC vuông tại A có AB < AC. Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. a) Chứng minh AH // DE. b) Trên tia DE lấy điểm I sao cho DI = AH. Gọi O là trung điểm của đoạn thẳng DH. Chứng tỏ rằng ba điểm A, O, I thẳng hàng. + Trong giờ học Toán, giáo viên đã yêu cầu học sinh tìm một số có 3 chữ số. Biết rằng nếu tăng chữ số đầu tiên lên n đơn vị và giảm chữ số thứ hai và thứ 3 đi n đơn vị thì ta được số mới gấp n lần số cần tìm. Em hãy giúp các bạn học sinh trả lời yêu cầu của giáo viên. + Gọi S là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập thành từ các chữ số 3; 4; 5; 7; 8; 9. Tính xác suất để số được lấy ra từ tập S là số chẵn?
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lâm Thao - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lâm Thao, tỉnh Phú Thọ; đề thi gồm 02 trang, hình thức 30% trắc nghiệm (12 câu – 06 điểm) + 70% tự luận (04 câu – 14 điểm), thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lâm Thao – Phú Thọ : + Biết đa thức f x chia cho x + 3 thì dư 10, chia cho x − 2 thì dư 5, chia cho x 3 2 được thương là 2x và còn dư. Tìm đa thức f x và sắp xếp đa thức f x theo lũy thừa giảm dần của biến. + Cho ∆ABC vuông tại A (AB AC). Gọi M là trung điểm của cạnh BC, lấy điểm D thuộc tia đối của tia MA sao cho MD MA. Kẻ BI vuông góc với AD tại I CK vuông góc với AD tại K. a) Chứng minh rằng BI CK. b) Kẻ AH vuông góc với BC tại H MN vuông góc với BD tại N. Chứng minh rằng các đường thẳng CK AH MN đồng quy. c) Chứng minh rằng N là trung điểm của BD. d) Chứng minh rằng BC AB AC AH. + Chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 50.