Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Nam Định : + Trên một mặt bàn phẳng có 2021 đồng xu kích thước bằng nhau, mỗi đồng xu có hai mặt trong đó có một mặt màu xanh và một mặt màu đỏ, đồng thời tất cả các đồng xu đều ngửa mặt màu xanh lên trên mặt bàn. Thực hiện trò chơi sau đây: mỗi lượt chơi phải đổi mặt 10 đồng xu nào đó trên mặt bàn. Hỏi sau 2022 lượt chơi có thể nhận được tất cả 2021 đồng xu trên mặt bàn đều ngửa mặt màu đỏ lên trên hay không? Hãy giải thích vì sao? + Xét tam giác ABC có độ dài các cạnh là abc thay đổi và thỏa mãn c b abc 2. Tìm giá trị nhỏ nhất của biểu thức 354 P bca acb abc. + Cho tam giác ABC vuông tại A AB AC có AH là đường cao. Lấy D là một điểm thuộc miền trong của tam giác AHC sao cho AH đi qua trung điểm của BD. Gọi E F theo thứ tự là giao điểm của AH với đường thẳng CD và BD. Qua E kẻ đường thẳng tiếp xúc với đường tròn đường kính CD tại điểm M (A và M thuộc cùng một nửa mặt phẳng có bờ là CD). Gọi N là giao điểm thứ hai của đường thẳng BD với đường tròn đường kính CD. Chứng minh rằng: 1) Tứ giác ABCN nội tiếp một đường tròn và 0 ANB CAH 90. 2) Tam giác EMD đồng dạng với tam giác ECM và MD AB ED BF BN MC EC 3) Ba điểm AM N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Một chiếc xe khách khởi hành từ Hà Nội và một chiếc xe tải khởi hành từ Vinh cùng một lúc và đi ngược chiều nhau. Sau khi gặp nhau, xe khách chạy thêm 2 giờ thì đến Vinh, còn xe tải chạy thêm 4 giờ 30 phút thì đến Hà Nội. Biết Hà Nội cách Vinh là 300 km, hai xe đi cùng tuyến đường. Vận tốc của xe khách bằng? + Khi tính toán thể tích căn phòng hình hộp chữ nhật, bạn An đã nhập sai chiều cao vào máy tính, An đã nhập số liệu lớn hơn 1/3 chiều cao thật. Sau khi có kết quả, An nói: “Mình đã nhầm, nhưng không sao, lại trừ bớt đi 1/3 kết quả này thì sẽ cho kết quả đúng thôi”. Bạn Bình, người đã tính đúng kết quả nói rằng: “Kết quả đó vẫn chưa đúng, An phải tiếp tục cộng thêm 8m3 nữa mới đúng”. Thể tích căn phòng bằng? + Một đoàn học sinh đi trải nghiệm ở công viên Văn Lang thành phố Việt Trì bằng ô tô. Nếu mỗi ô tô chở 22 học sinh thì thừa 1 học sinh. Nếu bớt đi 1 ô tô thì số học sinh được chia đều cho các ô tô còn lại. Biết mỗi ô tô chở không quá 30 học sinh, số học sinh của đoàn tham quan là?
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Châu Thành - Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Châu Thành, tỉnh Bến Tre; kỳ thi được diễn ra vào ngày 04 tháng 02 năm 2023.
Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT Ea HLeo - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Ea H’Leo, tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT Ea H’Leo – Đắk Lắk : + Chứng minh rằng với mọi số tự nhiên n lẻ ta có (n2 – 1)/4 là tích của hai số tự nhiên liên tiếp. + Cho M = 2.(9^2009 + 9^2008 + … + 9 + 1). Chứng minh M không là số chính phương. + Cho đường tròn tâm O đường kính AB và một điểm M bất kì thuộc đường tròn (M khác A và B). Gọi H là hình chiếu vuông góc của điểm M trên AB. Đường tròn đường kính HM cắt các dây cung MA, MB lần lượt tại P và Q. a. Chứng minh rằng: PHQ = 90° và MP.MA = MQ.MB. b. Gọi E, F lần lượt là trung điểm của AH, BH. Tứ giác EPQF là hình gì? c. Xác định vị trí của M để tứ giác EPQF có diện tích lớn nhất.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An (Bảng A và Bảng B); kỳ thi được diễn ra vào Chủ Nhật ngày 12 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho các số thực dương x, y, z thỏa mãn x2 − y2 + z2 = xy + 3yz + zx. Tìm giá trị lớn nhất của biểu thức P. + Cho nửa đường tròn (O), đường kính BC = 2R và một điểm A thay đổi trên nửa đường tròn đó (A không trùng với B và C). Vẽ AH vuông góc với BC tại H. Gọi I, J lần lượt là tâm đường tròn nội tiếp các tam giác AHB và AHC. Đường thẳng IJ cắt AB, AC theo thứ tự tại M và N. a) Chứng minh tam giác AMN vuông cân. b) Gọi P là giao điểm của BI và CJ. Chứng minh. c) Tìm giá trị lớn nhất của chu vi tam giác HIJ theo R. + Trên một khu đất hình chữ nhật kích thước 100m × 120m. Người ta muốn xây một sân bóng nhân tạo có nền đất là hình chữ nhật kích thước 25m × 35m và 9 bồn hoa hình tròn đường kính 5m. Chứng minh rằng dù xây trước 9 bồn hoa ở các vị trí như thế nào thì trên phần đất còn lại luôn tìm được một nền đất kích thước 25m x 35m để xây sân bóng.