Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 phòng GDĐT Vĩnh Bảo - Hải Phòng

Thứ Sáu ngày 29 tháng 05 năm 2020, phòng Giáo dục và Đào tạo huyện Vĩnh Bảo, thành phố Hải Phòng tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Vĩnh Bảo – Hải Phòng gồm 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Máy thở là một thiết bị công nghệ hữu ích, có tác dụng hỗ trợ hô hấp cho những người rất kém hoặc không còn khả năng tự hô hấp. Đây là thiết bị sống còn giúp chống chọi với bệnh Covid-19 của các bệnh nhân đã mắc ở thể nặng. Theo ước tính có khoảng 10% bệnh nhân mắc bệnh Covid-19 phải dùng đến máy thở, do đó khi dịch bệnh bùng phát thì trên thế giới sẽ thiếu hụt nghiêm trọng các thiết bị này. Để chủ động ứng phó dịch bệnh, một nhà máy được giao sản xuất 360 chiếc máy thở trong một thời gian hạn định. Trước tình hình dịch bệnh Covid 19 diễn biến hết sức phức tạp, xác định trách nhiệm tham gia bảo vệ sức khỏe cộng đồng nên nhà máy đã nâng cao năng lực sản xuất bằng cách tiến hành cải tiến kỹ thuật đồng thời kết hợp tăng ca để quyết tâm rút ngắn thời gian hoàn thành kế hoạch. Chính vì vậy, trên thực tế mỗi ngày nhà máy đã sản xuất tăng thêm 3 máy nên hoàn thành sớm trước 6 ngày so với kế hoạch được giao. Hỏi theo kế hoạch thì mỗi ngày nhà máy phải sản xuất bao nhiêu chiếc máy thở. [ads] + Cho đường tròn (O) đường kính AB. Lấy điểm C nằm trên đường kính AB và điểm D trên đường tròn (O) (các điểm C, D không trùng với A và B). Gọi E là điểm chính giữa cung nhỏ BD. Đường thẳng EC cắt đường tròn tại điểm thứ hai F. Gọi G là giao điểm của DF và AE. a) Chứng minh BAE = DFE và AGCF là tứ giác nội tiếp. b) Chứng minh CG vuông góc với AD. c) Kẻ đường thẳng đi qua C song song với AD cắt DF tại H. Chứng minh CH = CB. + Quay hình chữ nhật ABCD quanh cạnh AB một vòng ta được một hình trụ. Tính thể tích của hình trụ đó biết rằng AB = 2.AD = 4cm.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Ninh Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh Môn Toán (Chuyên) Năm 2023 2024 Sở GD&ĐT Ninh Bình Đề Thi Tuyển Sinh Môn Toán (Chuyên) Năm 2023 2024 Sở GD&ĐT Ninh Bình Xin chào quý thầy cô và các em học sinh! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Ninh Bình. Kỳ thi sẽ diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 của sở GD&ĐT Ninh Bình: Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Gọi E là điểm đối xứng của B qua AC và F điểm đối xứng của C qua AB. Đường thẳng BE cắt đường thẳng CF tại H. a) Chứng minh các tứ giác AHBF và AHCE là tứ giác nội tiếp. b) Đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại điểm thứ hai là D. Chứng minh F, B, D thẳng hàng và DA là tia phân giác của góc EDF. c) Gọi P, Q lần lượt là tâm đường tròn ngoại tiếp các tam giác ABE, ACF. Chứng minh sáu điểm B, C, D, O, P, Q cùng thuộc một đường tròn tâm I và giao điểm (khác D) của đường thẳng AD với đường tròn (I) là trực tâm tam giác APQ. d) Giả sử H thuộc đường tròn (I). Chứng minh các đường thẳng AI, DH, BC, PQ đồng quy. Cho p là một số nguyên tố. a) Chứng minh nếu p lẻ và tồn tại số nguyên x sao cho (x + 1) chia hết cho p thì (p – 1) chia hết cho 4. Chứng minh 2023p + 23^p – 24 không là số chính phương. Người ta tô màu mỗi điểm trên mặt phẳng bởi một trong hai màu đỏ hoặc xanh. Chứng minh: a) Tồn tại một tam giác vuông cân có ba đỉnh được tô cùng màu. b) Tồn tại một tam giác vuông có cạnh huyền bằng 2, một cạnh góc vuông bằng 1 và ba đỉnh được tô cùng màu. Mong rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc mọi người thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Tây Ninh
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Tây Ninh Đề thi tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Tây Ninh Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Tây Ninh, được tổ chức vào ngày 03 tháng 06 năm 2023. Đề thi gồm các câu hỏi sau: 1. Cho parabol (P): y = 2x^2 và đường thẳng (d): y = (7 - m)x + 3m - 3. Tìm các giá trị nguyên âm của m để (P) cắt (d) tại hai điểm phân biệt có hoành độ nhỏ hơn 4. 2. Cho đường tròn (O) đường kính AB. Trên (O) lấy hai điểm C, D nằm khác phía đối với AB và CD không đi qua O. Gọi E là giao điểm của AC và BD, F là giao điểm của AD và BC, I là trung điểm đoạn thẳng EF. Chứng minh IC là tiếp tuyến của (O). 3. Cho đường tròn (O) và điểm M nằm ngoài (O), vẽ tiếp tuyến MA và cắt tuyến MBC không đi qua O (MB < MC). Gọi H là hình chiếu vuông góc của A trên MO. a) Chứng minh: Tứ giác BHOC nội tiếp. b) Vẽ đường thẳng qua B song song với AC cắt các đường thẳng MA, AH lần lượt tại K, I. Chứng minh KB = BI. Hy vọng rằng đề thi sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai Chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến các bạn đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Lào Cai. Kỳ thi sẽ diễn ra vào ngày 03/06/2023. Dưới đây là một vài ví dụ trong đề thi: 1. Một cửa hàng nhập 10 sản phẩm gồm hai loại A và B về bán. Biết mỗi sản phẩm loại A nặng 9kg, mỗi sản phẩm loại B nặng 10kg và tổng khối lượng của tất cả các sản phẩm là 95kg. Hỏi cửa hàng đã nhập bao nhiêu sản phẩm mỗi loại? 2. Cho tam giác ABC vuông ở A, có đường cao AH. Biết góc ABC = 60°, độ dài BC = 40cm. a) Tính độ dài cạnh AB. b) Gọi điểm K thuộc đoạn thẳng AC sao cho HK vuông góc với AC. Tính độ dài đoạn HK. 3. Cho tam giác ABC có ba góc nhọn (BA < BC) và nội tiếp đường tròn tâm O. Hai tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại I. Tia BI cắt đường tròn (O) tại điểm thứ hai là D. a) Chứng minh rằng tứ giác OAIC nội tiếp. b) Chứng minh IC2 = IB.ID. c) Gọi M là trung điểm của BD. Tia CM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh rằng: MO vuông góc AE. Các em học sinh hãy cố gắng làm bài thật tốt để chinh phục kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Thừa Thiên Huế
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT Thừa Thiên Huế Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT Thừa Thiên Huế Xin chào quý thầy cô và các em học sinh! Hôm nay Sytu xin giới thiệu đến các bạn đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào ngày 3 tháng 6 năm 2023. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT Thừa Thiên Huế: + Bài toán 1: Một người đi xe đạp với vận tốc không đổi từ A đến B cách nhau 36 km. Trên cùng tuyến đường đó, khi đi từ B trở về A, người này đi với vận tốc lớn hơn 3 km/h so với vận tốc khi đi từ A đến B vì vậy thời gian về ít hơn thời gian đi là 36 phút. Hãy tính vận tốc của người đi xe đạp khi đi từ A đến B. + Bài toán 2: Cho tam giác ABC có ba góc nhọn, AB > AC và nội tiếp đường tròn (O). Tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại D. Gọi E là hình chiếu vuông góc của O trên đường thẳng BC. a) Chứng minh rằng tứ giác AOED là tứ giác nội tiếp. b) Chứng minh rằng DF là tiếp tuyến của đường tròn (O) và AB*FB = AC*FC. c) Chứng minh rằng ba điểm A, F, G thẳng hàng, với G là điểm đầu tiên của tiếp tuyến của đường tròn (O) tại B và C. + Bài toán 3: Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng quanh cạnh OB cố định thì được một hình nón có thể tích bằng 800π cm3. Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng 1920π cm3. Hãy tính độ dài của cạnh OB và OC. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới! Chúc các em học tốt!