Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số chuyên đề bồi dưỡng học sinh giỏi Toán 8

Tài liệu gồm 251 trang, tuyển tập một số chuyên đề bồi dưỡng học sinh giỏi Toán 8, hỗ trợ học sinh trong quá trình ôn tập chuẩn bị cho kỳ thi chọn học sinh giỏi Toán 8 các cấp (cấp trường, cấp quận / huyện, cấp thành phố / tỉnh …). CHỦ ĐỀ 1 . HẰNG ĐẲNG THỨC. + Các hằng đẳng thức cơ bản. + Các hằng đẳng thức mở rộng hay sử dụng. CHUYÊN ĐỀ 2 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ. + Phương pháp tách hạng tử. + Phương pháp nhóm hạng tử. + Phương pháp dùng hằng đẳng thức. + Phương pháp thêm, bớt cùng một hạng tử. + Phương pháp đổi biến. + Phương pháp hệ số bất định. + Đối với đa thức đa ẩn. + Các ứng dụng của phân tích đa thức thành nhân tử. CHUYÊN ĐỀ 3 . GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC. + Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. + Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. + Đa thức có từ hai biến trở lên. + Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. + Phương pháp đổi biến số. + Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. + Dạng phân thức. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐẠI SỐ. + Phương trình bậc nhất một ẩn. + Bất phương trình bậc nhất một ẩn. + Phương trình bậc cao. CHUYÊN ĐỀ 5 . ĐỒNG NHẤT THỨC. + Các bài toán về biểu thức nguyên. + Các dạng toán về phân thức đại số. + Rút gọn biểu thức. + Biểu thức có tính quy luật. CHUYÊN ĐỀ 6 . BẤT ĐẲNG THỨC. + Dùng định nghĩa và các phép biến đổi tương đương. + Dùng các phép biến đổi tương đương. + Bất đẳng thức dạng nghịch đảo (Cô-si cộng mẫu). + Dùng các bất đẳng thức phụ. + Phương pháp phản chứng. CHUYÊN ĐỀ 7 . ĐA THỨC. + Tính chia hết của đa thức. + Phần dư trong phép chia đa thức. + Dùng phương pháp xét giá trị riêng để tìm hệ số của một đa thức. + Đặt phép chia để tìm hệ số. CHUYÊN ĐỀ 8 . HÌNH HỌC. + Hình thang, hình thang cân. + Đường trung bình của tam giác, hình thang. + Đối xứng trục, đối xứng tâm. + Hình bình hành. + Hình chữ nhật. + Hình thoi. + Hình vuông. + Các bài tập tổng hợp về tứ giác đặc biệt. Xem thêm : Đề thi HSG Toán 8

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. I. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG 1. Nhắc lại về thứ tự trên tập số. 2. Bất đẳng thức. 3. Liên hệ giữa thứ tự và phép cộng. II. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN 1. Liên hệ giữa thứ tự và phép nhân với số lượng. 2. Liên hệ giữa thứ tự và phép nhân số âm. 3. Tính chất bắc cầu của thứ tự.
Chuyên đề giải toán bằng cách lập phương trình
Tài liệu gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề giải toán bằng cách lập phương trình, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Bước 1: Lập phương trình: + Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. + Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. + Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. II. BÀI TẬP MINH HỌA Phương pháp chung: + Bước 1: Kẻ bảng nếu được, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. + Bước 2: Giải thích từng ô trong bảng, lập luận để thiết lập phương trình bậc hai. + Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: + Dạng 1: Toán chuyển động. + Dạng 2: Toán năng suất. + Dạng 3: Toán làm chung công việc. + Dạng 4: Toán có nội dung hình học. + Dạng 5: Dạng toán có chứa tham số. + Dạng 6: Toán về tỉ lệ chia phần. + Dạng 7: Dạng toán liên quan đến số học. + Dạng 8: Dạng toán có nội dung vật lý, hóa học.
Chuyên đề phương trình chứa ẩn ở mẫu
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình chứa ẩn ở mẫu, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ + Bước 1: Tìm điều kiện xác định (viết tắt là ĐKXĐ) của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). + Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được. + Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. II. BÀI TẬP MINH HỌA Vận dụng phương pháp giải phưng trình chứa ẩn ở mẫu, đưa về phương trình bậc nhất đã biết.
Chuyên đề phương trình tích
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình tích, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Phương trình tích (một ẩn) là phương trình có dạng A(x).B(x)…. = 0. Trong đó A(x) và B(x) là các đa thức. Để giải phương trình này ta chỉ cần giải từng phương trình A(x) = 0, B(x) = 0 … rồi lấy tất cả các nghiệm của chúng. Các phương pháp phân tích đa thức thành nhân tử có vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Cách đặt ẩn phụ cũng hay được sử dụng để trình bày cho lời giải gọn gàng hơn. II. BÀI TẬP Vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích đưa phương trình đã cho về các phương trình bậc nhất đã biết cách giải.