Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 9 lần 4 năm 2023 - 2024 trường Hồng Phương - Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 lần 4 năm học 2023 – 2024 trường TH & THCS Hồng Phương, huyện Yên Lạc, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 4 năm 2023 – 2024 trường Hồng Phương – Vĩnh Phúc : + Cho tam giác ABC nhọn có các đường cao AA’, BB’, CC’ cắt nhau tại H. Gọi D là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với DH cắt AB, AC lần lượt tại M và N. Chứng minh rằng: a) HM AH HD CD b) ∆DMN là tam giác cân. + Một cửa hàng ban đầu niêm yết giá cho một chiếc điện thoại là 12 000 000 đồng. Sau đó cửa hàng đã giảm giá chiếc điện thoại này hai đợt, mỗi đợt đều giảm giá là m% so với giá trước đó. Sau hai đợt giảm giá, cửa hàng đã bán chiếc điện thoại này với giá 7 680 000 đồng. Hỏi mỗi đợt cửa hàng đã giảm giá bao nhiêu phần trăm? + Cho phương trình 1 21 1 3 7 a a x (ẩn x a là tham số). Hãy tìm tất cả các giá trị của a để phương trình trên có nghiệm âm.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 06/03/2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 - 2015 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 – 2015 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 05/04/2015, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2014 - 2015 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2014 – 2015 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 04 tháng 03 năm 2015; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2014 – 2015 sở GD&ĐT Ninh Bình : + Cho 3 số thực không âm x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức A = 2 2 2 22 2 232 232 32 x xy y y yz z z zx x. + Cho đường tròn tâm O, dây cung BC cố định. Điểm A trên cung nhỏ BC, A không trùng với B, C và điểm chính giữa của cung nhỏ BC. Gọi H là hình chiếu của A trên đoạn thẳng BC; E, F thứ tự là hình chiếu của B và C trên đường kính AA’. Chứng minh rằng: a) Hai tam giác HEF và ABC đồng dạng với nhau. b) Hai đường thẳng HE và AC vuông góc với nhau. c) Tâm đường tròn ngoại tiếp tam giác HEF là điểm cố định khi A chuyển động trên cung nhỏ BC. + Cho tam giác ABC vuông cân đỉnh A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 - 2014 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 – 2014 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 09/03/2014, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.