Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ nghịch Toán 7

Tài liệu gồm 41 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 1.1 Biểu diễn mối quan hệ tỉ lệ nghịch, xác định hệ số. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Nếu viết 1 y k x (k khác 0) thì có tương ứng mới y tỉ lệ thuận với 1 x theo hệ số tỉ lệ k. – Hệ số tỉ lệ k là k x y. Dạng 1.2 Tìm các đại lượng chưa biết. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Dùng công thức k y x để xác định tương quan tỉ lệ nghịch giữa hai đại lượng và xác định hệ số tỉ lệ. – Nếu hai đại lượng tỉ lệ nghịch với nhau thì: 2 x y k. Dạng 1.3 Kiểm tra xem các đại lượng có tỉ lệ nghịch với nhau không? – Trong mỗi công thức k y x (k khác 0), với mỗi giá trị của x cho tương ứng một giá trị của y. – Kiểm tra nếu có tỉ lệ 1 2 x y k thì hai đại lượng y và x tỉ lệ nghịch với nhau. Dạng 1.4 Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch và xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. – Để lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch ta thực hiện theo hai bước sau: + Bước 1. Xác định hệ số tỉ lệ k. + Bước 2. Dùng công thức xy k tìm các giá trị tương ứng của x và y. – Để xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. Ta xét xem tất cả tích các giá trị tương ứng của hai đại lượng có bằng nhau hay không: + Nếu tích bằng nhau thì các đại lượng tỉ lệ nghịch. + Nếu tích không bằng nhau thì các đại lượng không tỉ lệ nghịch. Dạng 2 . Một số bài toán tỉ lệ nghịch. 1. Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượng và quan hệ giữa chúng là hai đại lượng tỉ lệ nghịch. + Bước 2: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. 2. Bài toán tìm hai số biết chúng tỉ lệ nghịch với a và b. – Giả sử cần tìm hai số x và y biết chúng tỉ lệ nghịch với a và b (a và b là các số đã biết). Khi đó ta có ax by. Từ đó dựa vào điều kiện của x và y ta áp dụng tính chất dãy tỉ số bằng nhau một cách hợp lý để giải quyết bài toán. – Chú ý: Nếu hai số x và y tỉ lệ nghịch với a và b thì hai số x và y tỉ lệ thuận với 1 a và 1 b. Dạng 2.1 Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượngvà đặt ẩn phụ cho các đại lượng nếu cần. + Bước 2: Xác định quan hệ tỉ lệ nghịch giữa hai đại lượng tỉ lệ nghịch. + Bước 3: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. Dạng 2.2 Bài toán về nhiều đại lượng tỉ lệ nghịch. – Giả sử cần tìm hai số x y z t tỉ lệ nghịch với các số a b c d. Khi đó ta có ax by cz dt. – Tìm BCNN (a b c d e) rồi chia quan hệ ax by cz dt cho số vừa tìm được. – Áp dụng tính chất của dãy tỉ số bằng nhau rút x y z t. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nhân, chia số hữu tỉ
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nhân, chia số hữu tỉ, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 1: Số hữu tỉ và số thực. Mục tiêu: Kiến thức: + Nắm vững quy tắc nhân, chia hai số hữu tỉ. + Nắm vững các tính chất của phép nhân số hữu tỉ. Kĩ năng: + Vận dụng quy tắc nhân, chia số hữu tỉ để thực hiện phép tính, tính giá trị biểu thức. + Vận dụng các tính chất của phép nhân số hữu tỉ để tính nhanh. + Viết được một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhân, chia hai số hữu tỉ. Dạng 2: Tính giá trị của biểu thức. Dạng 3: Viết một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. Dạng 4: Tìm số hữu tỉ x thỏa mãn điều kiện cho trước. Dạng 5: Tìm điều kiện của x để biểu thức nhận giá trị nguyên.
Chuyên đề cộng, trừ số hữu tỉ
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề cộng, trừ số hữu tỉ, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 1: Số hữu tỉ và số thực. Mục tiêu : Kiến thức: + Nắm vững cách thực hiện cộng, trừ hai số hữu tỉ, quy tắc “chuyển vế” trong Q. Kĩ năng: + Thực hiện được cộng, trừ hay hai nhiều số hữu tỉ. Có kĩ năng thực hiện phép tính một cách hợp lí. + Viết được một số hữu tỉ dưới dạng tổng hay hiệu của hai số hữu tỉ. + Áp dụng được quy tắc “chuyển vế” trong bài toán tìm thành phần chưa biết của phép tính. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Thực hiện phép tính của hai hay nhiều số hữu tỉ. + Bài toán 1: Cộng, trừ hai số hữu tỉ. + Bài toán 2. Cộng, trừ nhiều số hữu tỉ. + Bài toán 3. Thực hiện phép tính một cách hợp lí. Dạng 2: Viết một số hữu tỉ dưới dạng tổng hoặc hiệu của hai số hữu tỉ. Dạng 3: Tìm số hữu tỉ x thỏa mãn điều kiện cho trước. Dạng 4: Tính tổng dãy số có quy luật.
Chuyên đề tập hợp các số hữu tỉ
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tập hợp các số hữu tỉ, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 1: Số hữu tỉ và số thực. Mục tiêu: Kiến thức: + Nắm được định nghĩa số hữu tỉ, mối quan hệ giữa các tập hợp số đã học với tập số hữu tỉ. + Nắm được cách biểu diễn số hữu tỉ trên trục số. + Nắm được phương pháp so sánh hai số hữu tỉ; khái niệm số hữu tỉ âm, số hữu tỉ dương. Kĩ năng: + Nhận biết số hữu tỉ và biểu diễn được số hữu tỉ trên trục số. + Biểu diễn được số hữu tỉ thành nhiều phân số bằng nhau. + Biết cách so sánh các số hữu tỉ với nhau. + Nhận biết được số hữu tỉ âm, số hữu tỉ dương và tìm điều kiện để số hữu tỉ là số âm (dương) hoặc số nguyên. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết quan hệ giữa các tập hợp số. Dạng 2: Biểu diễn số hữu tỉ. + Bài toán 1: Biểu diễn số hữu tỉ trên trục số. + Bài toán 2: Biểu diễn số hữu tỉ dưới dạng các phân số bằng nhau. Dạng 3: So sánh hai số hữu tỉ. Dạng 4: Tìm điều kiện để một số hữu tỉ là số âm (dương) hay số nguyên.
Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thực
Tài liệu gồm 42 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề số hữu tỉ – số thực trong chương trình Đại số 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề số hữu tỉ – số thực: BÀI 1 . TẬP HỢP Q CÁC SỐ HỮU TỈ. + Dạng 1. Sử dụng các kí hiệu. + Dạng 2. Biểu diễn số hữu tỉ. + Dạng 3. So sánh các số hữu tỉ. BÀI 2 . CỘNG TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng trừ hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tổng hoặc hiệu của hai số hữu tỉ. + Dạng 3. Tính tổng hoặc hiệu của nhiều số hữu tỉ. + Dạng 4. Tìm số hạng chưa biết trong một tổng hoặc một hiệu. + Dạng 5. Tính giá trị của biểu thức có nhiều dấu ngoặc. + Dạng 6. Tìm phần nguyên, phần lẻ của số hữu tỉ. BÀI 3 . NHÂN, CHIA SỐ HỮU TỈ. + Dạng 1. Nhân, chia hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. + Dạng 3. Thực hiện các phép tính với nhiều số hữu tỉ. + Dạng 4. Lập biểu thức từ các số cho trước. BÀI 4 . GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. + Dạng 1. Các bài tập về dấu giá trị tuyệt đối của một số hữu tỉ. + Dạng 2. Biểu diễn số hữu tỉ bằng các phân số khác nhau. + Dạng 3. Cộng, trừ, nhân, chia các số thập phân. + Dạng 4. So sánh các số hữu tỉ. + Dạng 5. Sử dụng máy tình bỏ túi để làm các phép tính cộng, trừ, nhân, chia số thập phân. BÀI 5 & 6 . LŨY THỪA CỦA MỘT SỐ HỮU TỈ. + Dạng 1. Sử dụng định nghĩa của lũy thừa với số mũ tự nhiên. + Dạng 2. Tính tích và thương của hai lũy thừa cùng cơ số. + Dạng 3. Tính lũy thừa của một lũy thừa. + Dạng 4. Tính lũy thừa của một tích, lũy thừa của một thương. + Dạng 5. Tìm số mũ của một lũy thừa. + Dạng 6. Tìm cơ số của một lũy thừa. + Dạng 7. Tính giá trị của biểu thức. [ads] BÀI 7 . TỈ LỆ THỨC. + Dạng 1. Thay tỉ số giữa các số hữa tỉ bằng tỉ số giữa các số nguyên. + Dạng 2. Lập tỉ lệ thức từ các tỉ số cho trước. + Dạng 3. Lập tỉ lệ thức từ đẳng thức cho trước, từ một tỉ lệ thức cho trước, từ các số cho trước. + Dạng 4. Tìm số hạng chưa biết của một tỉ lệ thức. BÀI 8 . TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU. + Dạng 1. Tìm hai số biết tổng (hoặc hiệu) và tỉ số của chúng. + Dạng 2. Chia một số thành các phần tỉ lệ với các số cho trước. + Dạng 3. Tìm hai số biết tích và tỉ số của chúng. + Dạng 4. Chứng minh đẳng thức từ một tỉ lệ thức cho trước. + Dạng 5. Thay tỉ số giữa các số hữu tỉ bằng tỉ số giữa các số nguyên. + Dạng 6. Tìm số hạng chưa biết trong một tỉ lệ thức. BÀI 9 . SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. + Dạng 1. Nhận biết một phân số viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. + Dạng 2. Viết một tỉ số hoặc một phân số dưới dạng số thập phân. + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản. + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản. BÀI 10 . LÀM TRÒN SỐ. + Dạng 1. Làm tròn các số theo một yêu cầu cho trước. + Dạng 2. Giải bài toán rồi làm tròn kết quả. + Dạng 3. Áp dụng quy ước làm tròn số để ước lượng kết quả các phép tính. BÀI 11 . SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. + Dạng 1. Liên hệ giữa lũy thừa bậc hai và căn bậc hai. + Dạng 2. Tìm căn bậc hai của một số cho trước. + Dạng 3. Tìm một số biết căn bậc hai của nó. + Dạng 4. Sử dụng máy tính bỏ túi để tính căn bậc hai của một số cho trước. BÀI 12 . SỐ THỰC. + Dạng 1. Câu hỏi và bài tập về định nghĩa các tập hợp số. + Dạng 2. So sánh các số thực. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Tìm giá trị của biểu thức. ÔN TẬP CHƯƠNG 1.