Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu chuyên đề tích phân và một số phương pháp tính tích phân

Tài liệu gồm 159 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề tích phân và một số phương pháp tính tích phân, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 2 . TÍCH PHÂN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Sử dụng định nghĩa tích phân. + Dạng 2. Sử dụng tính chất tích phân. + Dạng 3. Sử dụng tính chất chèn cận để tính tích phân. + Dạng 4. Sử dụng định nghĩa tích phân vào các bài toán khác. + Dạng 5. Phương pháp đổi biến số loại 1 để tính tích phân. + Dạng 6. Phương pháp đổi biến số loại 2 để tính tích phân. + Dạng 7. Phương pháp từng phần để tính tích phân. + Dạng 8. Kỹ thuật tích phân từng phần hàm ẩn. + Dạng 9. Tính tích phân dựa vào tính chất. + Dạng 10. Kỹ thuật phương trình hàm. + Dạng 11. Kỹ thuật biến đổi. + Dạng 12. Kỹ thuật đạo hàm đúng. + Dạng 13. Kỹ thuật đưa về bình phương loại 1. + Dạng 14. Kỹ thuật đưa về bình phương loại 2 – kỹ thuật Holder. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Tích phân hàm số hữu tỷ. + Tích phân đổi biến. + Tích phân từng phần. 3. Hệ thống bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC). + Dạng 1. Tích phân hàm ẩn. + Dạng 2. Tích phân một số hàm đặc biệt.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm ứng dụng tích phân tính thể tích
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Tính thể tích vật thể. 2. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Ox. 3. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Oy. 4. Ứng dụng tính thể tích khối cầu, khối chỏm cầu và một số hình đặc biệt. 5. Hệ thống Ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm ứng dụng tích phân tính diện tích
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính diện tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT. 1. Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số. 2. Ứng dụng tính diện tích hình tròn và hình Elip. B. VÍ DỤ MINH HỌA. C. BÀI TẬP TỰ LUYỆN. D. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm tích phân đặc biệt và nâng cao
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân đặc biệt và nâng cao, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Một số dạng tích phân đặc biệt. + Mệnh đề 1: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a a 0 f (x) dx 2 f (x) dx. + Mệnh đề 2: Nếu f(x) là hàm số lẻ và liên tục trên đoạn [−a;a] thì a a f (x) dx 0. + Mệnh đề 3: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a x a 0 f(x) dx f (x) dx m 1. + Mệnh đề 4: Nếu f(x) là hàm số liên tục trên [0;1] thì 2 2 0 0 f (sinx) dx f (cosx) dx. 2. Một số dạng tích phân vận dụng cao. + Dạng 1. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 2. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 3. Bài toán tổng quát. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích phân hàm hữu tỉ và hàm lượng giác
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân hàm hữu tỉ và hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.