Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 3 năm 2023 - 2024 phòng GDĐT Diễn Châu - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 3 năm 2023 – 2024 phòng GD&ĐT Diễn Châu – Nghệ An : + Một mảnh vườn hình chữ nhật có chiều dài lớn hơn chiều rộng 5m. Nếu tăng chiều dài 4m và tăng chiều rộng 3m thì diện tích mảnh vườn là 112m2. Tính chu vi của mảnh vườn lúc đầu. + Một cái ly có phần phía trên dạng hình nón đỉnh S có bán kính đáy bằng 3cm. Người ta rót nước vào cái ly, biết chiều cao của nước trong ly bằng 6cm và bán kính r của đường tròn đáy hình nón tạo thành khi rót nước vào ly bằng 2/3 bán kính đáy cái ly (hình bên). Tính thể tích của nước có trong ly. (Giả sử độ dày của thành ly không đáng kể; π ≈ 3,14 và kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2 3 AI OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE AC AI IB AI. c) Xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2019 - 2020 trường chuyên Thái Bình (Vòng 2)
Ngày 26 tháng 05 năm 2019, trường THPT chuyên tỉnh Thái Bình tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh vào các lớp 10 chuyên Toán – Tin để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường THPT chuyên Thái Bình (Vòng 2) gồm 5 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường THPT chuyên Thái Bình (Vòng 2) : + Trong mặt phẳng tọa độ Oxy, điểm M(a;b) được gọi là điểm nguyên nếu cả a và b đều là số nguyên. Chứng minh rằng tồn tại điểm I trong mặt phẳng tọa độ và 2019 số thực dương R1, R2 … R2019 sao cho có đúng k điểm nguyên nằm trong đường tròn (I;Rk) với mọi k là số nguyên dương không vượt quá 2019. [ads] + Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R. Trên cung nhỏ AD lấy điểm E bất kì (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M và N. Hai đường thẳng AN, DK cắt nhau tại P. 1. Chứng minh: Tứ giác EPND nội tiếp một đường tròn. 2. Chứng minh: góc EKM = góc DKM. 3. Khi M là trung điểm của AD, tính độ dài đoạn thẳng AE theo R. + Tìm các nghiệm nguyên (x;y) của phương trình √x + √y = √2020.
Đề Toán tuyển sinh vào lớp 10 năm 2019 trường THPT chuyên KHTN - Hà Nội
Chủ Nhật ngày 26 tháng 05 năm 2019, trường THPT chuyên KHTN, trực thuộc Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đạt yêu cầu để chuẩn bị cho năm học mới. Đề Toán tuyển sinh vào lớp 10 năm 2019 trường THPT chuyên KHTN – Hà Nội gồm 1 trang với 4 bài toán dạng tự luận, thời gian làm bài 120 phút, đây là đề thi vòng 1 – dành cho tất cả các thí sinh tham dự kỳ thi. [ads] Trích dẫn đề tuyển sinh vào lớp 10 năm 2019 trường THPT chuyên KHTN – Hà Nội : + Cho hình vuông ABCD, đường tròn (O) nội tiếp hình vuông ABCD tiếp xúc với các cạnh AB, AD lần lượt tại các điểm E, F. Gọi giao điểm của CE và BF là G. 1) Chứng minh rằng năm điểm A, F, O, C, E cùng nằm trên một đường tròn. 2) Gọi giao điểm của FB và đường tròn (O) là M (M khác F). Chứng minh rằng M là trung điểm của đoạn thẳng BG. 3) Chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O). + Với x, y là các số thực thỏa mãn 1 ≤ y ≤ 2, xy + 2 ≥ 2y, tìm giá trị nhỏ nhất của biểu thức: M = (x^2 + 4)/(y^2 + 1). + Tìm tất cả các cặp (x, y) nguyên thỏa mãn (x^2 – x + 1)(y^2 + xy) = 3x – 1.
Đề Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Phổ thông Năng khiếu - TP HCM
Sáng thứ Bảy ngày 25 tháng 05 năm 2019, hội đồng tuyển sinh lớp 10 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020 dành cho học sinh khối không chuyên. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM (không chuyên) gồm 1 trang, đề gồm 5 bài toán dạng tự luận, thời gian học sinh làm bài 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM : + Từ ngày 1/1/2018 đến 20/5/2019, giá bán lẻ xăng RON 95 có đúng bốn lần tăng và một lần giảm. Các thời điểm thay đổi giá xăng RON 95 trong năm 2019 (tính đến ngày 20/5/2019) được cho bởi bảng sau. Từ 16 giờ chiều 2/5/2019 giá bán lẻ 1 lít xăng RON 95 tăng thêm khoảng 25% so với giá 1 lít xăng RON 95 ngày 1/1/2019. Nếu ông A mua 100 lít xăng RON 95 ngày 2/1/2018 thì cũng với số tiền đó ông A sẽ mua được bao nhiêu lít xăng RON 95 vào ngày 3/5/2019? Cũng trong 2 ngày đó (2/1 và 3/5), ông B đã mua tổng cộng 200 lít xăng RON 95 với tổng số tiền là 3850000 đồng, hỏi ông B đã mua bao nhiêu lít xăng RON 95 vào ngày 3/5/2019? [ads] + Tứ giác ABCD có chu vi 18 cm, AB = 3/4.BC, CD = 5/4.BC và AD = 2AB. Tính độ dài các cạnh của tứ giác ABCD. Biết AC = CD, tính diện tích tứ giác ABCD. + Hình chữ nhật ABCD nội tiếp đường tròn (T) có tâm O, bán kính R = 2a. Tiếp tuyến của (T) tại C cắt các tia AB, AD lần lượt tại E, F. a) Chứng minh AB.AE = AD.AF và BEFD là tứ giác nội tiếp. b) Đường thẳng d qua A, d vuông góc với BD và d cắt (T), EF theo thứ tự tại M, N (M khác A). Chứng minh BMNE là tứ giác nội tiếp và N là trung điểm của EF. c) Gọi I là tâm đường tròn ngoại tiếp tam giác BEF. Tính IN theo a.
Đề Toán tuyển sinh vào 10 chuyên năm 2019 - 2020 sở GDĐT Hưng Yên
Nhằm tuyển chọn khóa học sinh lớp 10 vào các trường THPT chuyên tại tỉnh Hưng Yên để chuẩn bị cho năm học mới, vừa qua, sở Giáo dục và Đào tạo tỉnh Hưng Yên đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020. Đề Toán tuyển sinh vào 10 THPT chuyên năm học 2019 – 2020 sở GD&ĐT Hưng Yên được sử dụng cho các thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). [ads] Trích dẫn đề Toán tuyển sinh vào 10 chuyên năm 2019 – 2020 sở GD&ĐT Hưng Yên : + Trong mặt phẳng toạ độ Oxy cho đường thẳng (d): y = -1/2020.x + 3/2020 và parabol y = 2x^2. Biết đường thẳng (d) cắt parabol (P) tại hai điểm B và C. Tìm tọa độ điểm A trên trục hoành để |AB – AC| lớn nhất. + Cho hình vuông ABCD tâm O, cạnh a. Lấy M là điểm bất kì trên cạnh AB (M khác A, M khác B). Qua A kẻ đường thẳng vuông góc với CM tại H, DH cắt AC tại K. 1) Chứng minh rằng MK song song với BD. 2) Gọi N là trung điểm của BC, trên tia đối của tia NO lấy điểm E sao cho ON/OE = √2/2, DE cắt OC tại F. Tính FO/FC. 3) Gọi P là giao điểm của MC và BD, Q là giao điểm của MD và AC. Tìm giá trị nhỏ nhất của diện tích tứ giác CPQD khi M thay đổi trên cạnh AB.