Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 1 Toán 11 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề minh họa kiểm tra cuối học kì 1 môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1. Hàm số lượng giác và phương trình lượng giác. + Giá trị lượng giác của góc lượng giác. Công thức lượng giác. + Hàm số lượng giác. + Phương trình lượng giác cơ bản. 2. Dãy số. Cấp số cộng. Cấp số nhân. + Dãy số. + Cấp số cộng. Số hạng tổng quát của cấp số cộng. Tổng của n số hạng đầu tiên của cấp số cộng. + Cấp số nhân. Số hạng tổng quát của cấp số nhân. Tổng của n số hạng đầu tiên của cấp số nhân. 3. Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm. + Mẫu số liệu ghép nhóm. 4. Quan hệ song song trong không gian. + Đường thẳng và mặt phẳng trong không gian. + Hai đường thẳng song song. + Đường thẳng và mặt phẳng song song. + Hai mặt phẳng sonng song. Phép chiếu song song. 5. Giới hạn. Hàm số liên tục. + Giới hạn của dãy số. + Giới hạn của hàm số. + Hàm số liên tục.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 11 năm 2019 - 2020 trường Việt Thanh - TP HCM
Đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường Việt Thanh – TP HCM được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 30 câu, chiếm 06 điểm, phần tự luận gồm 04 câu, chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường Việt Thanh – TP HCM : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Điểm M, N lần lượt là trung điểm của SD, BC. a) Tìm giao tuyến của các cặp mặt phẳng: (SAC) và (SBD); (SAB) và (SCD). b) Gọi điểm K là trung điểm OM. Chứng minh rằng NK // (SAB). c) Gọi điểm E là thuộc cạnh CD sao cho CD = 3CE. Tìm điểm I là giao điểm của SA và (BME). Tính tỉ số SI/IA. + Gọi S là tập hợp tất cả các số tự nhiên gồm có 3 chữ số (các chữ số không nhất thiết khác nhau). Lấy ra một số từ tập S. Tính xác suất để lấy được số chia hết cho 7. + Một hộp đựng 6 quả cầu màu đỏ, 4 quả cầu màu xanh. Lấy ngẫu nhiên đồng thời ra 3 quả cầu. Tính xác suất để trong 3 quả lấy ra có đúng 2 quả cầu màu đỏ.
Đề kiểm tra HKI Toán 11 năm 2019 - 2020 trường Trần Hưng Đạo - Hà Nội
Ngày 05/12/2019, trường THPT Trần Hưng Đạo – Hà Nội tổ chức kiểm tra chất lượng cuối học kỳ I môn Toán 11 năm học 2019 – 2020. Đề kiểm tra HKI Toán 11 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội (đề số 01) gồm có 01 trang, đề được biên soạn dưới dạng tự luận với 04 bài toán, học sinh có 90 phút để hoàn thành bài thi học kỳ. Trích dẫn đề kiểm tra HKI Toán 11 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội : + Một hộp chứa 3 quả cầu đen và 2 cầu trắng. Lấy ngẫu nhiên đồng thời 2 quả. Tính xác suất để lấy được hai quả cầu khác màu. + Hai người tham gia một trò chơi ném bóng vào rổ, mỗi người ném vào rổ của mình 1 quả bóng. Biết rằng xác suất ném bóng trúng rổ của người thứ nhất, người thứ hai lần lượt là 1/5 và 2/7 và hai người ném một cách độc lập với nhau. a) Tính xác suất để hai người cùng ném bóng trúng rổ. b) Tính xác suất để có ít nhất một người ném không trúng rổ. [ads] + Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SC và SD. 1) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). Chứng minh rằng đường thẳng MN song song với mặt phẳng (SAB). 2) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (OMN). Thiết diện là hình gì, tại sao? 3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và (OMN). Tính tỷ số IK/IG.
Đề kiểm tra HK1 Toán 11 năm học 2018 - 2019 trường THPT chuyên Hưng Yên
giới thiệu đến bạn đọc nội dung đề kiểm tra HK1 Toán 11 năm học 2018 – 2019 trường THPT chuyên Hưng Yên, đề thi có mã đề 128 gồm 2 trang, đề được biên soạn theo hình thức kết hợp trắc nghiệm khách quan và tự luận, với phần trắc nghiệm gồm 25 câu, phần tự luận gồm 2 câu, học sinh làm bài thi trong 90 phút. Trích dẫn đề kiểm tra HK1 Toán 11 năm học 2018 – 2019 trường THPT chuyên Hưng Yên : + Làng Duyên Yên, xã Ngọc Thanh, huyện Kim Động, tỉnh Hưng Yên nổi tiếng với trò chơi dân gian đánh đu. Trong trò chơi này, khi người chơi nhún đều thì cây đu sẽ đưa người chơi dao động qua lại ở vị trí cân bằng. Nghiên cứu trò chơi này, người ta thấy rằng khoảng cách h (tính bằng mét) từ người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian t (t ≥ 0 và được tính bằng giây) bởi hệ thức h = |d| với d = 3cos[pi/3(2t – 1)], trong đó quy ước rằng d > 0 khi vị trí cân bằng ở phía sau lưng người chơi đu và d < 0 trong trường hợp trái lại. Tìm thời điểm đầu tiên sau 10 giây mà người chơi đu ở xa vị trí cân bằng nhất. [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai đường thẳng phân biệt không cắt nhau và không song song thì chéo nhau. B. Hai đường thẳng phân biệt không chéo nhau thì hoặc cắt nhau hoặc song song. C. Hai đường thẳng không có điểm chung thì chéo nhau. D. Hai đường thẳng chéo nhau thì không có điểm chung. + Cô dâu và chú rể mời 6 người ra chụp ảnh kỉ niệm, người thợ chụp hình có bao nhiêu cách sắp xếp sao cho cô dâu, chú rể đứng cạnh nhau.
Đề kiểm tra định kỳ Toán 11 lần 1 năm 2018 - 2019 sở GD và ĐT Bắc Ninh
Đề kiểm tra định kỳ Toán 11 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề), đề nhằm đánh giá tổng quát lại các nội dung kiến thức Toán 11 mà học sinh đã học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra định kỳ Toán 11 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh : + Một hộp chứa 5 quả cầu màu xanh, 6 quả cầu màu đỏ. Lấy ngẫu nhiên cùng lúc ra 5 quả cầu từ hộp đó. a. Hỏi có bao nhiêu cách lấy ra như vậy. b. Tính xác suất sao cho 5 quả cầu được lấy ra có 3 quả cầu màu xanh và 2 quả cầu màu đỏ. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm của AC và BD. Trên cạnh AB lấy điểm M sao cho M không trùng với điểm A và B, trên cạnh CD lấy điểm N sao cho N không trùng với điểm C và D. Mặt phẳng (a) là mặt phẳng đi qua MN và song song với SA. a. Tìm giao tuyến của (SAC) và (SBD). b. Tìm giao điểm F của SB với (a). c. Xác định thiết diện của hình chóp với (a). Tìm điều kiện của MN để thiết diện là hình thang.