Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán trắc nghiệm đạo hàm thường gặp - Nguyễn Bảo Vương

Tài liệu gồm 68 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chủ đề đạo hàm có đáp án và lời giải chi tiết trong chương trình Đại số và Giải tích 11 chương 5. Mục lục tài liệu các dạng toán trắc nghiệm đạo hàm thường gặp – Nguyễn Bảo Vương: Chủ đề 1 . Đạo hàm bằng định nghĩa. Chủ đề 2 . Quy tắc tính đạo hàm – phương trình tiếp tuyến. Phần A . Câu hỏi và bài tập trắc nghiệm. Dạng toán 1. Tính đạo hàm tại điểm (Trang 1). Dạng toán 2. Tính đạo hàm của một số hàm số thường gặp (đa thức, chứa căn, phân thức, hàm hợp) (Trang 2). + Tính đạo hàm (Trang 2). + Một số bài toán tính đạo hàm có thêm điều kiện (Trang 5). Dạng toán 3. Bài toán tiếp tuyến (Trang 7). + Tiếp tuyến tại điểm (Trang 7). + Tiếp tuyến khi biết hệ số góc, quan hệ song song, vuông góc với đường thẳng cho trước (Trang 9). + Tiếp tuyến đi qua một điểm (Trang 12). + Một số bài toán liên quan đên tiếp tuyến (Trang 13). Dạng toán 4. Bài toán quảng đường, vận tốc (Trang 16). [ads] Phần B . Đáp án và lời giải chi tiết. Dạng toán 1. Tính đạo hàm tại điểm (Trang 18). Dạng toán 2. Tính đạo hàm của một số hàm số thường gặp (đa thức, chứa căn, phân thức, hàm hợp) (Trang 19). + Tính đạo hàm (Trang 19). + Một số bài toán tính đạo hàm có thêm điều kiện (Trang 21). Dạng toán 3. Bài toán tiếp tuyến (Trang 23). + Tiếp tuyến tại điểm (Trang 23). + Tiếp tuyến khi biết hệ số góc, quan hệ song song, vuông góc với đường thẳng cho trước (Trang 27). + Tiếp tuyến đi qua một điểm (Trang 33). + Một số bài toán liên quan đên tiếp tuyến (Trang 37). Dạng toán 4. Bài toán quảng đường, vận tốc (Trang 46). Chủ đề 3 . Đạo hàm hàm số lượng giác. Chủ đề 4 . Vi phân và đạo hàm cấp cao.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đạo hàm - Nguyễn Bảo Vương
Tài liệu gồm 185 trang gồm lý thuyết, công thức đạo hàm cơ bản và mở rộng, phân dạng và hướng dẫn giải các dạng toán chuyên đề đạo hàm, các bài tập có đáp án. Tập 1. Khái niệm đạo hàm và các phương pháp tính đạo hàm Khái niệm đạo hàm: Tính đạo hàm bằng định nghĩa Các quy tắc tính đạo hàm + Vấn đề 1. Tính đạo hàm bằng công thức + Vấn đề 2. Sử dụng đạo hàm để tìm giới hạn + Vấn đề 3. Đạo hàm cấp cao và vi phân Đạo hàm tổng hợp [ads] Tập 2. Phương trình tiếp tuyến + Vấn đề 1. Viết phương trình tiếp tuyến của đồ thị hàm số khi biết tiếp điểm + Vấn đề 2. Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc của tiếp tuyến + Vấn đề 3. Viết phương trình tiếp tuyến của đồ thị hàm số khi tiếp tuyến đi qua điểm cho trước Tập 3. 250 bài tập trắc nghiệm đạo hàm tự luyện Bài 1: Định nghĩa và ý nghĩa của đạo hàm Bài 2: Quy tắc tính đạo hàm Bài 3: Đạo hàm của hàm số lượng giác Bài 4: Vi phân Bài 5: Đạo hàm cấp cao
Trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 86 trang tổng hợp câu hỏi và bài tập trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH2017 – 2018) Phát biểu nào trong các phát biểu sau là đúng? A. Nếu hàm số y = f(x) có đạo hàm trái tại x0 thì nó liên tục tại điểm đó. B. Nếu hàm số y = f(x) có đạo hàm phải tại x0 thì nó liên tục tại điểm đó. C. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm -x0. D. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó. [ads] + (THPT Chuyên Vĩnh Phúc – MĐ 903 lần 1 – năm 2017 – 2018) Cho hàm số y = x^3 + 1, gọi Δx là số gia của đối số tại x và Δy là số gia tương ứng của hàm số, tính Δy/Δx. + (THPT Thăng Long – Hà Nội – lần 1 năm 2017 – 2018) Có bao nhiêu điểm thuộc đồ thị hàm số y = (2x – 1)/(x – 1) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2018?
300 câu trắc nghiệm đạo hàm theo chủ đề có đáp án - Phạm Văn Huy
Tài liệu gồm 32 trang với các bài toán trắc nghiệm đạo hàm được phân loại thành: 1. Định nghĩa đạo hàm 2. Đạo hàm của hàm đa thức – hữu tỉ – căn thức 3. Đạo hàm của hàm số lượng giác 4. Đạo hàm cấp cao 5. Vi phân 6. Tiếp tuyến – ý nghĩa của đạo hàm [ads]