Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo giữa kỳ 1 Toán 9 năm 2023 - 2024 trường THCS Lê Quý Đôn - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo kiểm tra đánh giá giữa học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS Lê Quý Đôn, quận 3, thành phố Hồ Chí Minh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề tham khảo giữa kỳ 1 Toán 9 năm 2023 – 2024 trường THCS Lê Quý Đôn – TP HCM : + Rừng ngập mặn Cần Giờ (còn gọi là Rừng Sác), được UNESCO công nhận là khu dự trữ sinh quyển của thế giới đầu tiên ở Việt Nam vào ngày 21/01/2000. Diện tích rừng phủ xanh được cho bởi hàm số S = 0,05t + 3,14 trong đó S tính bằng nghìn héc-ta, t tính bằng số năm kể từ năm 2000. a/ Tính diện tích Rừng Sác được phủ xanh vào năm 2000, 2022? b/ Hãy cho biết diện tích rừng Sác được phủ xanh đạt 3,64 nghìn hecta vào năm nào? + Vào ngày “Black Friday” cửa hàng điện tử giám giá 10% cho các mặt hàng. Nếu mua online thì được giảm tiếp 5% trên giá đã giảm. a) Bình mua online 1 bộ máy vi tính với giá niêm yết là 15 000 000 đồng (đã bao gồm thuế VAT) vào ngày trên thì phải trả bao nhiêu tiền? b) Cùng lúc đó, Bình mua thêm đĩa cài đặt phần mềm diệt virus ABC bản quyền 1 năm và phải trả tất cả là 13 081 500 đồng. Hỏi đĩa cài đặt phần mềm diệt virus ABC giá niêm yết là bao nhiêu? (Kết quả làm tròn đến chữ số hàng nghìn). + Một chiếc máy bay xuất phát từ vị trí A bay lên với vận tốc 500 km/h theo đường thẳng tạo với phương ngang một góc nâng 200 (xem hình bên). Nếu máy bay chuyển động theo hướng đó đi được 10 km đến vị trí B thì mất mấy phút?(Kết quả làm tròn đến chữ số thập phân thứ nhất). Khi đó máy bay sẽ ở độ cao bao nhiêu kilômét so với mặt đất (BH là độ cao)? (kết quả làm tròn đến hàng đơn vị).

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Sơn Đông, Sơn Tây, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội : + Cho hai biểu thức. a) Tính giá trị của biểu thức A tại x = 25. b) Chứng minh 3 2 x B x. c) Tìm tất cả các giá trị nguyên của x để P AB có giá trị nguyên. + 1) Một cột đèn có bóng trên mặt đất dài 6m. Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 0 40. Tính chiều cao của cột đèn (làm tròn đến mét). 2) Cho tam giác ABC vuông tại A, đường cao AH. Biết AB cm AC cm 3 4. a) Tính AH b) Gọi D E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng. c) Kẻ trung tuyến AM gọi N là giao điểm của AM và DE. Tính tỉ số diện tích của tam giác AND và tam giác ABC. + Tìm các số xyz thỏa mãn đẳng thức.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Thanh Xuân, Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Cho biểu thức a) Tính giá trị của A khi 1 9 a b) Rút gọn B c) Tìm giá trị nguyên của a để B nhận giá trị nguyên. + Tính giá trị biểu thức. + Cho hình bình hành ABCD có 90 A α. Gọi I K lần lượt là hình chiếu của B′, D′ trên đường chéo AC. Gọi M N lần lượt là hình chiếu của C′ trên các đường thẳng A B. a) Chứng minh rằng: Tam giác BCM đồng dạng với tam giác DCN b) Chứng minh rằng: Tam giác CMN đồng dạng với tam giác BCA. Từ đó suy ra MN A C sinα c) Tính diện tích tứ giác ANCM biết BC 6 cm AB 4 cm và α 60. d) Chứng minh: 2 AC AD AN AB AM.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS thị trấn Văn Điển - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS thị trấn Văn Điển, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội : + Với x ≥ 0 và x ≠ 25 cho hai biểu thức. a) Tính A với x = 9. b) Chứng minh biểu thức 5Bx. c) Cho 3BPA. Tìm x nguyên để P có giá trị là một số nguyên. + Cho tam giác ABC vuông tại A, AB = 3 cm, AC = 4 cm. a) Giải tam giác ABC. b) Gọi I là trung điểm của BC vẽ AH BC. Tính AH AI. c) Qua A kẻ đường thẳng xy vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh: 2 4 BC MB NC. d) Gọi K là trung điểm của AH. Chứng minh BKN thẳng hàng. + Giải phương trình: 2x.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Vạn Phúc - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Vạn Phúc, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội : + Ở một thời điểm trong ngày, một cột cờ cao 11m có bóng trên mặt đất dài 6m. Hỏi góc giữa tia sáng mặt trời và bóng cột cờ là bao nhiêu? (làm tròn đến phút). + Cho hình chữ nhật ABCD có AB BC 9cm 12cm. Kẻ AH vuông góc với BD tại H. a) Tính BD AH và số đo góc ABD? b) Kẻ HI vuông góc với AB. Chứng minh AI AB DH HB. c) Đường thẳng AH cắt BC tại M và cắt DC tại N. Chứng minh 2 HA HM HN (làm tròn kết quả độ dài đến chữ số thập phân thứ 3 số đo góc đến độ). + Tìm x y thỏa mãn phương trình.