Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 10 năm 2022 - 2023 cụm các trường THPT - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic chọn học sinh giỏi môn Toán 10 cấp cụm năm học 2022 – 2023 cụm các trường THPT trực thuộc sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi Olympic Toán 10 năm 2022 – 2023 cụm các trường THPT – Hà Nội : + Cho Parabol (P): y = x2 – 2x – 1. 1) Lập bảng biến thiên và vẽ đồ thị (P). 2) Tìm giá trị thực của m để đường thẳng d: y = mx + 1 cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thoả mãn |x1 – x2| nhỏ nhất? + Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Cửa hàng cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi trang trại phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất? + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, BD = 26 và điểm A(2;-1). Biết điểm C có hoành độ dương và nằm trên đường thẳng d: x – y + 1 = 0. 1) Viết phương trình đường thẳng AC. 2) Tìm tọa độ điểm B biết B có hoành độ lớn hơn 4.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 10 môn Toán cấp trường năm 2018 2019 trường Thuận Thành 2 Bắc Ninh
Nội dung Đề thi HSG lớp 10 môn Toán cấp trường năm 2018 2019 trường Thuận Thành 2 Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 trường Thuận Thành 2 năm 2018 - 2019 Đề thi HSG Toán lớp 10 trường Thuận Thành 2 năm 2018 - 2019 Trường THPT Thuận Thành 2 Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 nhằm thành lập đội tuyển học sinh giỏi Toán. Đề thi bao gồm 6 bài toán, học sinh có thời gian 150 phút để làm bài. Các em học sinh đạt điểm cao trong kỳ thi sẽ được tuyên dương trước toàn trường, góp phần làm tấm gương học tập cho các bạn khác. Họ cũng sẽ được bồi dưỡng để tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi gồm các câu hỏi khó, đa dạng về các khái niệm và phương pháp giải toán. Ví dụ như tìm nghiệm của phương trình bậc 2, tìm điểm trên mặt phẳng tọa độ, khảo sát và vẽ đồ thị hàm số. Kỳ thi không chỉ đánh giá kiến thức mà còn khuyến khích sự sáng tạo, logic và tư duy của các em học sinh. Chúc các em đạt kết quả cao và tiếp tục phấn đấu trên con đường học tập!
Đề thi chọn HSG lớp 10 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh
Nội dung Đề thi chọn HSG lớp 10 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh Bản PDF - Nội dung bài viết Đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh Đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh Đề thi chọn HSG Toán lớp 10 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh được tổ chức vào ngày 14 tháng 04 năm 2018. Đề thi bao gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút. Mỗi bài toán sẽ giúp học sinh thể hiện kiến thức và kỹ năng giải toán của mình từ các chủ đề khác nhau. Trong bài toán đầu tiên, học sinh sẽ cần tìm tọa độ các đỉnh của hình vuông ABCD khi biết các thông tin như trung điểm cạnh AB, trung điểm đoạn CI và điều kiện của đỉnh D. Hướng giải sẽ là qua việc tìm tọa độ các đỉnh để giải phương trình và điều kiện đề bài cho ra kết quả cuối cùng. Bài toán thứ hai đề cập đến Parabol và đường thẳng cắt nhau tạo thành hai điểm phân biệt A và B theo điều kiện AB = 10. Học sinh cần phải giải phương trình giữa Parabol và đường thẳng để tìm ra giá trị của m để thỏa mãn điều kiện đề bài. Trong bài toán cuối cùng, học sinh sẽ cần tính diện tích tam giác ABC khi biết các thông tin về tam giác, góc, hai đường trung tuyến vuông góc và độ dài một cạnh. Hướng giải sẽ là sử dụng các công thức trong hình học để tính toán diện tích tam giác theo yêu cầu đề bài. Với nhiều bài toán đa dạng về nội dung và đòi hỏi khả năng suy luận logic, đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh sẽ giúp học sinh rèn luyện kỹ năng giải toán, tư duy logic và khám phá sự sáng tạo trong học tập.
Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An
Nội dung Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Bản PDF - Nội dung bài viết Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Đề thi chọn HSG cấp trường Toán lớp 10 năm 2017 – 2018 trường THPT Con Cuông – Nghệ An là bài thi quan trọng dành cho các học sinh giỏi để thử sức và phát triển năng khiếu toán học của mình. Đề thi gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), và đề thi đi kèm lời giải chi tiết. Trích dẫn đề thi chọn HSG cấp trường Toán lớp 10 năm 2017 – 2018: 1. Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn vtBD = 2/3.vtBC, vtAE = 1/4.vtAC. Điểm K trên đoạn thẳng AD sao cho 3 điểm B, K, E thẳng hàng. Tìm tỉ số AD/AK. 2. Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại B, AB = 2BC, D là trung điểm AB, E là điểm thuộc đoạn AC sao cho AC = 3EC, có phương trình CD: x – 3y + 1 = 0, E(16/3;1). a) Chứng minh rằng BE là phân giác trong của góc B. Tìm tọa độ điểm I là giao của CD và BE. b) Tìm tọa độ các đỉnh A, B, C, biết A có tung độ âm. Bài thi này không chỉ đòi hỏi kiến thức vững chắc của học sinh mà còn đề cao khả năng suy luận logic và giải quyết vấn đề. Chắc chắn sẽ là một thách thức đáng giá đối với các em học sinh yêu thích môn Toán.
Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm học 2017 2018 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm học 2017 2018 sở GD và ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề Thi HSG Toán Lớp 10 THPT Hà Tĩnh 2017 - 2018 Đề Thi HSG Toán Lớp 10 THPT Hà Tĩnh 2017 - 2018 Đề thi chọn HSG tỉnh Toán lớp 10 THPT năm học 2017 – 2018 tại sở GD và ĐT Hà Tĩnh đưa ra những bài toán thú vị và đòi hỏi sự tư duy logic và khéo léo của học sinh. Đề bao gồm 5 bài toán tự luận, thời gian làm bài 180 phút, dành cho học sinh lớp 10 và 11 khối THPT. Một trong những bài toán trong đề thi là vấn đề về trồng đậu và cà trên diện tích 800 m2. Học sinh cần phải tính toán kỹ lưỡng để đưa ra quyết định trồng mỗi loại cây để thu được lãi cao nhất và số công không vượt quá 90. Những bài toán như vậy không chỉ giúp học sinh rèn luyện khả năng tính toán mà còn phát triển tư duy logic và quyết định của họ. Ngoài ra, đề thi còn đưa ra bài toán về tam giác ABC trong mặt phẳng với hệ tọa độ Oxy, yêu cầu tìm tọa độ đỉnh C dựa trên các điều kiện đã cho. Để giải quyết bài toán này, học sinh cần phải áp dụng kiến thức về tọa độ và tính toán độ dài đường cao của tam giác. Trong bài toán khác, học sinh cần chứng minh tam giác MBG có diện tích là một số tự nhiên trong tam giác ABC. Đây là bài toán đòi hỏi sự khéo léo trong việc áp dụng kiến thức về tam giác và tính chất của các hình học. Đề thi chọn HSG Toán lớp 10 THPT Hà Tĩnh 2017 - 2018 không chỉ là cơ hội để các học sinh thử thách khả năng mình mà còn là dịp để phát triển tư duy logic và khám phá sự hấp dẫn của môn Toán.