Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh Toán 9 năm học 2019 - 2020 sở GDĐT Lạng Sơn

Thứ Hai ngày 18 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Lạng Sơn tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh năm học 2019 – 2020. Đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lạng Sơn gồm có 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lạng Sơn : + Cho hình chữ nhật co độ dài hai cạnh là 2 và 4. Đặt vào bên trong hình chữ nhật đó 17 điểm phân biệt, bất kì. Chứng minh rằng bao giờ cũng tìm được ít nhất ba điểm trong số 17 điểm đó, tạo thành ba đỉnh của một tam giác có diện tích bé hơn 1. [ads] + Cho hình thang vuông ABCD có A = D = 90◦, tia phân giác trong của góc C đi qua trung điểm O của AD. a) Chứng minh rằng BC tiếp xúc với đường tròn (O;OA) tại một điểm E. b) Cho AD = 2a. Tính tích của AB và CD theo a. c) Qua C, vẽ cát tuyến CD, 1 nằm giữa C và J, với đường tròn (O;OA). Vẽ dây cung DK song song với L. Xác định vị trí của điểm J để ∆CKJ có diện tích lớn nhất. + Tìm các số nguyên dương x, y thỏa mãn phương trình: xy2 + 2xy + x − 16y − 32 = 0.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Quang Trung - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Quang Trung, thành phố Quy Nhơn, tỉnh Bình Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Quang Trung – Bình Định : + Trên bảng ban đầu ghi số 2 và số 4. Ta thực hiện cách viết thêm các số lên bảng như sau: nếu trên bảng đã có hai số, giả sử là a b a b ta viết thêm lên bảng số có giá trị là a b ab. Hỏi với cách thực hiện như vậy, trên bảng có thể xuất hiện số 123456 được hay không? Giải thích. + Cho tam giác ABC, biết rằng 3 A 2 B 1800. Chứng minh: AB2 = BC2 + AB.AC. + Cho tam giác đều ABC có cạnh bằng a. Hai điểm M, N lần lượt di động trên hai đoạn thẳng AB AC AB AC sao cho AM AN 1. Chứng minh MN = a – x – y.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 11 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho tam giác ABC vuông tại A có đường cao AH cắt trung tuyến BE tại D. Gọi M, N lần lượt là hình chiếu của A lên các đường thẳng CD, BE. Chứng minh: a. 2 BE EN EM và AC B AB C BC sin sin. b. HMC EHA. c. BM vuông góc với MH. + Trong mặt phẳng cho 8093 điểm mà diện tích của mọi tam giác với các đỉnh là các điểm đã cho không lớn hơn 1. Chứng minh rằng trong số các điểm đã cho có thể tìm được 2024 điểm nằm trong hoặc nằm trên cạnh của một tam giác có diện tích không lớn hơn 1. + Cho các số nguyên a và b thỏa mãn S a b ab a b 2 2 3 2023 chia hết cho 5. Tìm số dư khi chia a b cho 5.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Võ Trường Toản - Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Võ Trường Toản, thành phố Cao Lãnh, tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 10 tháng 08 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Võ Trường Toản – Đồng Tháp : + Nhân dịp ngày siêu khuyến mãi 08/08/2023, một siêu thị trên địa bàn thành phố Cao Lãnh đã khuyến mãi lô hàng tivi có giá niêm yết là 7 400 000 đồng/cái. Lần đầu siêu thị giảm 10% so với giá niêm yết thì bán được 10 cái tivi, lần sau siêu thị giảm thêm 5% nữa (so với giá giảm lần 1) thì bán thêm được 15 cái nữa. Sau khi bán hết 25 cái tivi thì siêu thị lời được 11 505 000 đồng. Hỏi giá vốn của một cái tivi là bao nhiêu tiền? + Cho ABC có D là điểm di động trên cạnh AC, G là trọng tâm của ABD. Các đường thẳng CG, BD cắt nhau tại E. Chứng minh rằng EB CA ED CD không phụ thuộc vào vị trí điểm D trên cạnh AC. + Gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm BP và AQ. Chứng minh ba điểm H, I, E thẳng hàng.
Đề học sinh giỏi Toán 9 cấp quận năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp quận năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 11 năm 2023.