Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Cầu Giấy, Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ được tổ chức vào ngày ... tháng 09 năm 2022. Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 trường THCS Cầu Giấy, Hà Nội có những bài toán đa dạng và thú vị, mời quý vị cùng tham gia giải đề thi nhé. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1/(c + 1), với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. 2. Trên tam giác nhọn ABC, ta có đường cao AD, BE, CF đồng qui tại H. Chứng minh rằng I là trung điểm của AH và IEM = 90°. 3. Xét tập hợp A gồm các số nguyên dương không vượt quá 100, thỏa mãn điều kiện nếu không phải số nhỏ nhất thì tồn tại a, b, c trong A sao cho x = a + b + c. Chứng minh rằng tất cả các phần tử của tập hợp A đều là số chẵn. Các em hãy thử sức với đề thi này và cố gắng giải đúng nhé! Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Quế Võ - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quế Võ, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Quế Võ – Bắc Ninh : + Tìm các số tự nhiên x; y sao cho x2 + 3x + 1 = 5y. + Có bao nhiêu cách viết các số tự nhiên từ 1 đến 15 thành một dãy sao cho tổng của hai số liên tiếp bất kỳ trong dãy đều là số chính phương. + Cho hai đường tròn (O) và (O’) thay đổi nhưng luôn cắt nhau tại hai điểm phân biệt A và B cố định. Gọi M là trung điểm của OO’ và T là điểm đối xứng với A qua M. Đường tròn tâm T bán kinh TA tương ứng cắt các đường tròn (O) và (O’) tại các giao điểm thứ hai là E và F. a) Chứng minh rằng AE là tiếp tuyến của đường tròn (O’) b) Chứng minh rằng đường tròn ngoại tiếp tam giác AEF luôn đi qua một điểm cố định khác A, khi hai đường tròn (O) và (O’) thay đổi nhưng luôn đi qua A, B c) Trên đường tròn (O) lấy điểm P bất kỳ sao cho PA cắt (O’) tại Q. Chứng minh rằng TP = TQ.
Đề chọn học sinh giỏi Toán 9 THCS năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán 9 THCS năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC có hai đường trung tuyến BM, CN cắt nhau tại điểm G. Gọi K là một điểm trên cạnh BC, đường thẳng (d1) đi qua K và song song với CN cắt AB tại D, đường thẳng (d2) đi qua K và song song với BM cắt AC tại E. Gọi I là giao điểm của hai đường thẳng KG và DE. Chứng minh rằng I là trung điểm của đoạn thẳng DE. + Cho hình thang ABCD có đáy nhỏ là AB và BC = BD. Gọi H là trung điểm của đoạn thẳng CD. Đường thẳng (d) đi qua điểm H cắt các đường thẳng AC, AD lần lượt tại E, F sao cho D nằm giữa A và F. Chứng minh rằng DBF = EBC. + Một cửa hàng bán bưởi Đoan Hùng với giá bán mỗi quả là 50000 đồng. Với giá bán này thì mỗi ngày cửa hàng chỉ bán được 40 quả. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 1000 đồng thì số bưởi bán tăng thêm được là 10 quả mỗi ngày. Xác định giá bán để cửa hàng thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi quả bưởi là 30000 đồng.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào thứ Tư ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Giải phương trình nghiệm nguyên x3 – y3 – 2y2 – 3y – 1 = 0. Tìm số nguyên tố p để 2041 – p2 không chia hết cho 24. + Cho đường tròn (O) đường kính AB, qua A và B lần lượt vẽ các tiếp tuyến d1 và d2 với (O). Từ điểm M bất kỳ trên (O) vẽ tiếp tuyến với đường tròn, cắt d1 tại C và cắt d2 tại D. Kẻ MH vuông góc với AB tại H. a) Chứng minh rằng: AD, BC, MH đồng quy tại trung điểm của MH. b) Đường tròn (O) đường kính CD cắt đường tròn (O) tại E và F (E thuộc cung AM). Chứng minh EF đi qua trung điểm của MH. + Cho tam giác ABC đều cạnh a. Điểm M di động trên đoạn BC. Vẽ ME vuông góc với AB tại E. MF vuông góc với AC tại F. Tính giá trị nhỏ nhất của đoạn EF theo a.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Trà Ôn - Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi vòng huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Trà Ôn, tỉnh Vĩnh Long; đề thi được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Trà Ôn – Vĩnh Long : + Chứng minh rằng 2^70 + 3^70 chia hết cho 13. Tìm nghiệm nguyên của phương trình: 2(x + y) + 1 = 3xy. + Cho M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N. a. Chứng minh rằng B, D, M, O cùng thuộc một đường tròn. b. Chứng minh DC = DN. c. Chứng minh AC là tiếp tuyến của đường tròn tâm O. d. Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm của MH. Chứng minh B, C, I thẳng hàng. + Cho các số thực dương x, y, z thỏa mãn x + 2y + 3z ≥ 20. Tìm giá trị nhỏ nhất của biểu thức A = x + y + z + 3/x + 9/2y + 4/z.