Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết - Nguyễn Xuân Chung

Tài liệu gồm có 56 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Xuân Chung, chọn lọc các câu hỏi và bài tập trắc nghiệm chủ đề mũ và lôgarit vận dụng cao (cách gọi khác: mũ và lôgarit nâng cao, mũ và lôgarit khó, mũ và lôgarit VDC …) có đáp án, lời giải chi tiết và bình luận sau bài toán, giúp bạn đọc hiểu được hướng tư duy, tiếp cận và giải quyết bài toán; phần lời giải chi tiết được trình bày ngắn gọn, có hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh; tài liệu giúp học sinh giải quyết tốt các bài toán khó trong chương trình Giải tích 12 và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung được tác giả chia thành ba phần: phần thứ nhất gồm các câu hỏi và bài tập được trích từ các đề thi THPT Quốc gia môn Toán chính thức, các đề minh họa, đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong những năm gần đây; phần thứ hai gồm các câu hỏi và bài tập được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên cả nước; phần thứ ba gồm một số câu hỏi và bài tập tương tự giúp học sinh rèn luyện thêm. [ads] Trích dẫn tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung: + Cho phương trình 2^x = √(m.2^x.cos(pi.x) – 4) với m là tham số thực. Gọi m0 là giá trị của m để phương trình đã cho có đúng 1 nghiệm thực. Mệnh đề nào sau đây đúng? + Cho hai số thực dương x và y thỏa mãn điều kiện: 3 + ln((x + y + 1)/3xy) = 9xy – 3x – 3y. Giá trị nhỏ nhất của biểu thức P = xy là? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên của m để phương trình f(2log_2 x) = m có nghiệm duy nhất trên [1/2;2). + Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a^x (a > 0 và a khác 1) qua điểm I(1;1). Giá trị của biểu thức f(2 + log_a 1/2018) bằng? + Đây là bài toán khó vì số mũ của lũy thừa là biểu thức phức tạp. Nếu để nguyên để khảo sát thì gặp khó khăn lớn khi phải đạo hàm và tìm nghiệm, rồi còn phải lập bảng biến thiên … do đó gặp tình huống này thì chúng ta nghĩ đến phương pháp đánh giá để giảm độ phức tạp. Nói như vậy: phương pháp đạo hàm là công cụ mạnh để giải toán hàm số, nhưng trong trường hợp này chưa chắc tỏ ra là “mạnh”. Bài toán trên là thi Olimpic hay sao nhỉ? Ra đề thi kiểu như vậy thì bó tay!

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập phương trình lượng giác
Tài liệu gồm 38 trang, được biên soạn bởi quý thầy, cô giáo giảng dạy bộ môn Toán học tại trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh, phân dạng và tuyển chọn các bài toán trắc nghiệm + tự luận chuyên đề phương trình lượng giác, giúp học sinh lớp 11 tự học chương trình Đại số và Giải tích 11 chương 1. XÁC ĐỊNH GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC HAY CUNG LƯỢNG GIÁC. 1. Đường tròn lượng giác. 2. Giá trị lượng giác. 3. Hàm số lượng giác. CÔNG THỨC LƯỢNG GIÁC. 1. Hệ thức cơ bản. 2. Cung liên kết. 3. Công thức cộng. 4. Cung liên kết. 5. Công thức nhân đôi. 6. Công thức hạ bậc. 7. Công thức biến tích thành tổng. 8. Công thức biến tổng thành tích. VẤN ĐỀ 1. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. VẤN ĐỀ 2. PHƯƠNG TRÌNH BẬC HAI THEO MỘT GIÁ TRỊ LƯỢNG GIÁC. VẤN ĐỀ 3. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI SIN VÀ COS. VẤN ĐỀ 4. PHƯƠNG TRÌNH ĐẲNG CẤP BẬC 2 ĐỐI VỚI SIN VÀ COS. VẤN ĐỀ 5. PHƯƠNG TRÌNH ĐỐI XỨNG ĐỐI VỚI SIN VÀ COS. VẤN ĐỀ 6. SỬ DỤNG CÔNG THỨC BIẾN ĐỔI.
Bài tập hàm số lượng giác và phương trình lượng giác - Võ Công Trường
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Võ Công Trường, tuyển chọn các bài tập  trắc nghiệm và tự luận chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). PHẦN 1 . BÀI TẬP TRẮC NGHIỆM. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. DẠNG 1. TẬP XÁC ĐỊNH CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 2. XÉT TÍNH CHẴN, LẺ CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 3. TÍNH TUẦN HOÀN CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 4. XÉT TÍNH ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 5. TÌM GIÁ TRỊ LỚN NHẤT GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 6. CÂU HỎI HỖN HỢP. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. DẠNG 1: PTLG CƠ BẢN (KHÔNG CẦN BIẾN ĐỔI). DẠNG 2: PTLG CƠ BẢN (BIẾN ĐỔI, KHÔNG ĐIỀU KIỆN). DẠNG 3: PTLG CƠ BẢN CÓ ĐIỀU KIỆN. DẠNG 4: PTLG CƠ BẢN TRÊN KHOẢNG ĐOẠN. DẠNG 5: PTLG CƠ BẢN CÓ THAM SỐ. DẠNG 6: BIỂU DIỄN NGHIỆM TRÊN ĐTLG. PHẦN 2 . BÀI TẬP TỰ LUẬN. DẠNG 1: TÌM TẬP XÁC ĐỊNH. DẠNG 2: TÌM GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT. DẠNG 3: PHƯƠNG TRÌNH BẬC 2 ĐỐI VỚI 1 HÀM SỐ LƯỢNG GIÁC. DẠNG 4: PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI SINU, COSU. DẠNG 5: PHƯƠNG TRÌNH THUẦN NHẤT BẬC HAI ĐỐI VỚI SINU, COSU. DẠNG 6: PHƯƠNG TRÌNH BIẾN ĐỔI. Xem thêm : Hệ thống kiến thức và phương pháp giải Toán 11 – Võ Công Trường