Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Sơn La

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Sơn La Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS năm 2022 - 2023 tại Sơn La Đề thi học sinh giỏi Toán THCS năm 2022 - 2023 tại Sơn La Chào các thầy cô giáo và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán trung học cơ sở năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 11 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi sau: Trong mặt phẳng tọa độ Oxy, đường thẳng (d) có phương trình y = 2x - a^2 và parabol (P) có phương trình y = ax^2 (a > 0). Hãy tìm a sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A và B và chứng minh rằng A và B nằm bên phải trục tung. Gọi xA, xB là hoành độ của A và B. Tìm giá trị nhỏ nhất của biểu thức: T = 4/(xA + xB) + 1/(xA*xB). Chứng minh rằng tam giác ADE đồng dạng với tam giác ABC trong tam giác nhọn nội tiếp đường tròn (O) có đường cao BD và CE. Tia AO cắt BC tại M và giao cung nhỏ BC tại N. Tia BO cắt AC tại P, tia CO cắt AB tại F. Chứng minh rằng DE // SR và AN là tia phân giác của góc SAR trong tam giác ADE. Chứng minh rằng MB*MC/MA^2 + PC*PA/PB^2 + FA*FB/FC^2 = 1. Xét 100 số tự nhiên liên tiếp từ 1 đến 100. Gọi A là số thu được bằng cách sắp một cách tùy ý 100 số đó thành một dãy, B là số thu được bằng cách đặt một cách tùy ý các dấu cộng vào giữa các chữ số của A. Chứng minh rằng cả A và B đều không chia hết cho 2046. Hy vọng rằng các bạn sẽ rèn luyện kỹ năng Toán của mình thông qua đề thi này. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 cấp tỉnh vòng 1 năm 2023 - 2024 phòng GDĐT Văn Bàn - Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh vòng 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Văn Bàn, tỉnh Lào Cai. Trích dẫn Đề HSG Toán 9 cấp tỉnh vòng 1 năm 2023 – 2024 phòng GD&ĐT Văn Bàn – Lào Cai : + Gọi S là tập hợp các số tự nhiên có 4 chữ số, lấy ngẫu nhiên 1 số từ tập S. Tính xác suất để lấy được là số chính phương không vượt quá 2022. + Trên quãng đường AB dài 20 km, tại cùng một thời điểm, bạn An đi bộ từ A đến B và bạn Bình đi bộ từ B đến A. Sau 2 giờ kể từ lúc xuất phát, An và Bình gặp nhau tại C và cùng nghỉ tại C 15 phút (vận tốc của An trên quãng đường AC không thay đổi, vận tốc của Bình trên quãng đường BC không thay đổi). Sau khi nghỉ, An đi tiếp đến B với vận tốc nhỏ hơn vận tốc của An trên quãng đường AC là 1 km/h, Bình đi tiếp đến A với vận tốc lớn hơn vận tốc của Bình trên quãng đường BC là 1 km/h. Biết rằng An đến B sớm hơn so với Bình đến A là 48 phút. Hỏi vận tốc của An trên quãng đường AC là bao nhiêu? + Chứng minh rằng tổng lập phương của ba số nguyên liên tiếp luôn chia hết cho 9.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Lai Châu, tỉnh Lai Châu.
Đề HSG Toán 9 năm 2023 - 2024 phòng GDĐT Phan Rang - Tháp Chàm - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Phan Rang – Tháp Chàm, tỉnh Ninh Thuận; kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024. Trích dẫn Đề HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT Phan Rang – Tháp Chàm – Ninh Thuận : + Tìm các cặp số nguyên dương (x;y) thỏa mãn: 5xy + 3x + y = 9. + Chuẩn bị đón xuân Giáp Thìn 2024, những nghệ sĩ ở thành phố Phan Rang – Tháp Chàm trang trí một hình lục giác đều bằng cách nối hai đỉnh lục giác với nhau bởi một đoạn thẳng và tô đoạn thẳng đó bởi một trong hai màu xanh hoặc đỏ. Biết rằng ba đỉnh nào của lục giác cũng được nối với nhau tạo thành một tam giác, chứng minh rằng bao giờ cũng tồn tại một tam giác có ba cạnh cùng màu. + Cho đường tròn (O) tâm O và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O), (A là tiếp điểm). Vẽ đường kính AB của đường tròn (O), gọi C là giao điểm MB với đường tròn (O). Đường thẳng qua C vuông góc với AM cắt MA, MO lần lượt tại D, E. a) Chứng minh CB.CM = AD.AM. b) Chứng minh E là trung điểm của CD. c) Gọi I là giao điểm của AC và BD. Chứng minh ba điểm M, E, I thẳng hàng.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT TP Cao Lãnh - Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Cao Lãnh, tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT TP Cao Lãnh – Đồng Tháp : + Một cửa hàng bán quà lưu niệm trên địa bàn Thành phố Cao Lãnh mua một số lượng biểu tượng Bé Sen hết 480000 đồng. Cửa hàng bán 2 Bé Sen với giá bằng phân nửa giá mua, bán những Bé Sen còn lại được lãi 8000 đồng mỗi Bé Sen. Tiền lãi tổng cộng là 72000 đồng. Tính số lượng Bé Sen mà cửa hàng đó đã mua. + Cho hàm số (d): y = (m – 2)x + m. Tìm giá trị của m biết hàm số đồng biến và đồ thị (d) cắt trục tung tại điểm M(0;9). + Cho tam giác ABC nhọn và một điểm P thuộc miền trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của điểm P lên BC, CA, AB. a) Chứng minh BD2 + CE2 + AF2 = DC2 + EA2 + FB2. b) Xác định vị trí của điểm P trong tam giác ABC để tổng DC2 + EA2 + FB2 đạt giá trị nhỏ nhất.