Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 9 năm 2018 2019 trường THCS Phạm Hồng Thái Hà Nội

Đề thi HK2 Toán 9 năm học 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội gồm 1 trang với 5 bài toán dạng tự luận, học sinh làm bài thi học kỳ 2 Toán 9 trong khoảng thời gian 90 phút, kỳ thi nhằm kiểm định chất lượng dạy và học môn Toán 9 của giáo viên và học sinh trong giai đoạn học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 trường THCS Phạm Hồng Thái – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người dự định đi xe gắn máy từ địa điểm A đến địa điểm B cách nhau 90 km. Vì có việc gấp phải đến B trước giờ dự định là 45 phút nên người ấy phải tăng vận tốc lên mỗi giờ 10 km. Hãy tính vận tốc mà người đó dự định đi. [ads] + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn (O) kẻ từ A tiếp xúc với đường tròn (O) tại B và C. Trên cung nhỏ BC lấy điểm M. Từ M kẻ MH vuông góc với BC, MK vuông góc với AC và MI vuông góc với AB. 1) Chứng minh tứ giác MIBH nội tiếp. 2) Chứng minh góc MIH bằng góc MHK. 3) Chứng minh: MH^2 = MI.MK. 4) Tìm vị trí điểm M trên cung nhỏ BC để biểu thức P = MI^2 + MK^2 – 2MH^2. + Tìm tọa độ giao điểm (nếu có) của (d) và (P), với (P): y = x^2 và (d): y = 2x + 3.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình, hệ phương trình: Một công nhân được giao khoán sản xuất 120 sản phẩm trong thời gian nhất định. Trên thực tế, nhờ hợp lí hóa một số thao tác nên mỗi giờ người đó làm thêm được 3 sản phẩm nữa. Nhờ đó người công nhân hoàn thành công việc sớm hơn 2 giờ. Hỏi mỗi giờ người đó dự định làm bao nhiêu sản phẩm? + Cho đường tròn (O; R) và một đường thẳng d cắt (O) tại C, D. Lấy điểm M bất kỳ trên d sao cho MC > MD và điểm M nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB với đường tròn (O); A, B là các tiếp điểm. Gọi H là trung điểm CD. Chứng minh: a) Năm điểm A, B, M, O, H cùng thuộc một đường tròn. b) Chứng minh MA2 = MC.MD và HM là tia phân giác của AHB. c) Vẽ DK // AM (K thuộc AB). Chứng minh HK // AC. + Cho x, y là những số thực thỏa mãn điều kiện x2 + y2 = 1, tìm giá trị lớn nhất của biểu thức P = x/(y + 2).