Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường Ngô Gia Tự - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Ngô Gia Tự, quận Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 15 tháng 05 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 trường Ngô Gia Tự – Hà Nội : + Cho tam giác ABC nhọn AB AC nội tiếp đường tròn O R. Gọi M là trung điểm của đoạn thẳng BC. Tia MO cắt cạnh AC tại điểm D. Các tiếp tuyến tại A B, của đường tròn O cắt nhau tại điểm E. 1) Chứng minh bốn điểm E A O B cùng thuộc một đường tròn. 2) Gọi N là giao điểm của EO với AB. Chứng minh: DC BN R DM. 3) Đường thẳng qua D và song song với BC, cắt cung AC không chứa điểm B của đường tròn O tại điểm P. Chứng minh ba điểm P D E thẳng hàng và APD NPB. + Cho hai biểu thức: 1 x A x và 3 1 1 4 2 2 x B x x x với x x 0 4. 1) Tính giá trị của biểu thức A khi x = 16. 2) Rút gọn biểu thức B. 3) Tìm tất cả các giá trị nguyên của x để biểu thức P AB có giá trị nguyên. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trên một khúc sông, một ca nô tuần tra đi xuôi dòng 96km và ngược dòng 48km mất tất cả 5 giờ. Một lần khác, ca nô tuần tra đó đi xuôi dòng 48km và ngược dòng 60 km mất 4 giờ. Tính vận tốc riêng của ca nô tuần tra và vận tốc dòng nước khi di chuyển trên khúc sông này, biết vận tốc ca nô và vận tốc dòng nước đều không thay đổi.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 trường THCS Phú La - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Phú La, quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 trường THCS Phú La – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai người thợ nếu cùng làm chung một công việc thì sau 12 giờ sẽ xong. Nếu người thứ nhất làm riêng trong 8 giờ rồi người thứ hai làm riêng trong 12 giờ thì cả hai người làm được 80% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu? + Cho hệ phương trình. a) Giải hệ phương trình với m = 2. b) Tìm m để đường thẳng (1) cắt đường thẳng (2) tại một điểm cách đều các trục tọa độ. + Cho đường tròn (O) có dây AB không là đường kính, gọi D là điểm thuộc tia đối của tia AB. Kẻ đường kính PQ của (O) vuông góc với dây AB tại C (P thuộc cung lớn AB). Tia DP cắt (O) tại điểm M (M khác P), các đường thẳng AB và QM cắt nhau tại K. 1) Chứng minh bốn điểm P, C, K, M cùng thuộc một đường tròn. 2) Kẻ tiếp tuyến DE của (O) (E là tiếp điểm và E thuộc nửa mặt phẳng bờ AB chứa điểm P). Chứng minh DM.DP = DE2. 3) Cho ba điểm A, B, D cố định, gọi F là giao điểm của PK và DQ. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua hai điểm A và B thì DK.DC = DE2 và KP.KF không đổi.
Đề khảo sát chất lượng Toán 9 tháng 2 năm 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 tháng 2 năm 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất phải may được 2200 chiếc áo trong một ngày. Do tổ 1 làm vượt mức kế hoạch 12%, tổ hai làm vượt mức kế hoạch 10% nên cả hai tổ đã may vượt mức được 240 chiếc áo. Hỏi theo kế hoạch, mỗi tổ phải may được bao nhiêu áo trong một ngày. + Tính chiều cao của một cột cờ, biết bóng của cột cờ trên mặt đất dài 11,6m và góc tạo bởi tia nắng mặt trời với mặt đất là 36°50′ (làm tròn đến số thập phân thứ nhất). + Cho đường tròn (O) và điểm C nằm ngoài (O). Từ C kẻ hai tiếp tuyến CA, CB với (O) (A, B là tiếp điểm). a) Chứng minh bốn điểm O; A; B; C cùng thuộc một đường tròn. b) Qua C kẻ cát tuyến CDE đến (O) (D nằm giữa C và E). Chứng minh: AC2 = CD.CE. c) Gọi K là trung điểm của DE, đường thẳng BK cắt đường tròn (O) tại Q. 1. Chứng minh rằng AQ // DE. 2. Chứng minh khi cát tuyến CDE thay đổi thì trọng tâm G của tam giác ADE luôn chạy trên một đường tròn cố định.
Đề kiểm tra chất lượng Toán 9 năm 2022 - 2023 trường THCS Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 02 năm 2023. Trích dẫn Đề kiểm tra chất lượng Toán 9 năm 2022 – 2023 trường THCS Đống Đa – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Theo kế hoạch, hai xí nghiệp A và B phải làm tổng cộng 750 đơn hàng. Thực tế, xí nghiệp A làm nhiều hơn 10% và xí nghiệp B làm ít hơn 5% so với dự định nên cả hai xí nghiệp làm được 765 đơn hàng. Tìm số đơn hàng mà mỗi xí nghiệp phải làm theo kế hoạch. + Cho hệ phương trình: Tìm tất cả các số nguyên m để hệ phương trình trên có nghiệm duy nhất (x;y) sao cho x và y là các số nguyên. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại điểm D. Gọi điểm M là trung điểm của dây BC. 1) Chứng minh: Bốn điểm A, D, O, M cùng thuộc một đường tròn. 2) Tia OM cắt đường tròn (O) tại điểm E, hai đoạn thẳng AE và BC cắt nhau tại điểm G. Chứng minh: Điểm E nằm chính giữa cung BC và AB.AC = AE.AG. 3) Tia phân giác của góc ABC cắt AE tại điểm I. Giả sử dây AB cố định và điểm C di chuyển trên đường tròn (O) sao cho tam giác ABC nhọn(AB < AC). Chứng tỏ điểm I luôn nằm trên một đường tròn cố định.
Đề kiểm tra Toán 9 năm 2023 trường chuyên KHTN - Hà Nội (Vòng 2 - Đợt 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 năm học 2022 – 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự Nhiên, thành phố Hà Nội (Vòng 2 – Đợt 1); kỳ thi được diễn ra vào Chủ Nhật ngày 19 tháng 02 năm 2023.