Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tứ giác nội tiếp

Tài liệu gồm 38 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tứ giác nội tiếp, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 7. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Định nghĩa. 2. Định lí. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh tứ giác nội tiếp. Phương pháp giải: Để chứng minh tứ giác nội tiếp, ta có thể sử dụng một trong các cách sau: + Cách 1. Chứng minh tứ giác có tổng hai góc đối bằng 180°. + Cách 2. Chứng minh tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α. + Cách 3. Chứng minh tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. + Cách 4. Tìm được một điểm cách đều bốn đỉnh của tứ giác. Dạng 2. Sử dụng tứ giác nội tiếp để chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau, các đường thẳng song song hoặc đồng quy, các tam giác đồng dạng. Phương pháp: Sử dụng tính chất của tứ giác nội tiếp. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN NÂNG CAO

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập chuyên đề hàm số
Tài liệu gồm 55 trang trình bày lý thuyết trọng tâm và hướng dẫn giải các bài toán liên quan đến hàm số và đồ thị hàm số y = ax, y = ax + b, y = ax^2 trong chương trình Toán 9, tài liệu phù hợp để ôn luyện nâng cao Toán 9, bồi dưỡng học sinh giỏi Toán 9 và luyện thi vào lớp 10 môn Toán. Khái quát nội dung tài liệu lý thuyết và bài tập chuyên đề hàm số: CHỦ ĐỀ 1 : HÀM SỐ BẬC NHẤT + Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho vói mỗi giá trị của x ta luôn xác định được chỉ một giá trị số tương ứng của y thì y được gọi là hàm số của x. + Đồ thị của hàm số y = f(x) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;f(x)) trên mặt phẳng tọa độ. + Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là hàm hằng. + Hàm số đồng biến và hàm số nghịch biến. CHỦ ĐỀ 2 : HÀM SỐ Y = AX + Hàm số y = ax (a khác 0) xác định với mọi số thực a. + Đồ thị của hàm số y = ax là một đường thẳng đi qua gốc toạ độ. + Trên tập hợp số thực, hàm số y = ax đồng biến khi a > 0, nghịch biến khi a < 0. [ads] CHỦ ĐỀ 3 : HÀM SỐ BẬC NHẤT Y = AX + B + Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b, trong đó a và b là các số thực xác định và a khác 0. + Hàm số y = ax + b (a khác 0) xác định với mọi số thực . + Trên tập hợp số thực, hàm số y = ax + b đồng biến khi a > 0, nghịch biến khi a < 0. + Đồ thị của hàm số bậc nhất là một đường thẳng cắt cả hai trục toạ độ. + Hàm số y = ax là trường hợp đặc biệt của hàm số y = ax + b khi b = 0. CHỦ ĐỀ 4 : HÀM SỐ Y = AX^2 + Hàm số y = ax^2 (a khác 0) xác định với mọi x thuộc R. + Nếu a > 0 thì hàm số nghịch biến với x < 0, đồng biến với x > 0, bằng 0 với x = 0. Nếu a < 0 thì hàm số đồng biến với x < 0, nghịch biến với x > 0, bằng 0 với x = 0. + Đồ thị của hàm số là một parabol đi qua gốc toạ độ và nhận trục tung làm trục đối xứng.
Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan
Tài liệu gồm 91 trang được sưu tầm và tổng hợp bởi tác giả Trịnh Bình, phân dạng và hướng dẫn giải các dạng toán chủ đề rút gọn biểu thức chứa căn và các bài toán liên quan, đây là dạng toán được bắt gặp thường xuyên trong chương trình Toán 9 và trong đề thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan: Vấn đề 1 . Các công thức biến đổi căn thức. Vấn đề 2 . Cách tìm điều kiện trong bài toán chứa căn thức. Vấn đề 3 . Các dạng toán biến đổi căn thức thường gặp. Vấn đề 4 . Dùng ẩn phụ để đơn giải hóa bài toán. Vấn đề 5 . Các bài toán về tính tổng dãy có quy luật. Vấn đề 6 . Rút gọn biểu thức chưa một hay nhiều ẩn. [ads] Vấn đề 7 . Rút gọn biểu thức và bài toán liên quan. + Dạng toán 1: Tính giá trị biểu thức khi x = k (với k là hằng số). + Dạng toán 2: Tính giá trị biến x để P = k (với k là hằng số). + Dạng toán 3: Tính giá trị biến x để P = A (với A là biểu thức chứa ẩn). + Dạng toán 4: Tìm giá trị của biến x để biểu thức P đã cho thỏa mãn bất đẳng thức P < k (>, ≥, ≤) với k là hằng số. + Dạng toán 5: So sánh biểu thức đã cho với k (hằng số) hoặc B (biểu thức chứa ẩn). + Dạng toán 6: So sánh biểu thức rút gọn A với √A hoặc A^2. + Dạng toán 7: Chứng minh với mọi giá trị của ẩn x để biểu thức A đã cho xác định thì A > k (<, ≥, ≤) với k là hằng số. + Dạng toán 8: Tìm giá trị của biến x để biểu thức P đã cho thỏa mãn bất đẳng thức P < A (>, ≥, ≤) với A là biểu thức chứa ẩn. + Dạng toán 9: Tìm giá trị của ẩn để biểu thức đã cho nhận giá trị nguyên. + Dạng toán 10: Tìm giá trị của ẩn để biểu thức đạt GTNN hoặc GTLN. + Dạng toán 11: Chứng minh biểu thức đã cho luôn âm hoặc luôn dương. + Dạng toán 12: Tìm giá trị của ẩn thỏa mãn phương trình, bất phương trình chứa dấu giá trị tuyệt đối. + Dạng toán 13: Tìm giá trị tham số m để x thỏa mãn phương trình, bất phương trình. Bài tập luyện tập và hướng dẫn giải bài tập.
Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 1)
Tài liệu gồm 208 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 1. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 1): PHẦN I . ĐẠI SỐ Chương 1 . Căn bậc hai, căn bậc ba. 1. Căn bậc hai. A. Tóm tắt lý thuyết. 1. Căn bậc hai của một số. 2. So sánh các căn bậc hai số học. B. Phương pháp giải toán. 2. Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Phá dấu trị tuyệt đối. 2. Điều kiện để √A có nghĩa. 3. Sử dụng hằng đẳng thức √A^2 = |A|. 4. Phương trình – bất phương trình. C. Bài tập tự luyện. 3. Liên hệ giữa phép nhân và phép khai phương. A. Tóm tắt lí thuyết. 1. Định lí. 2. Khai phương một tích. 3. Nhân các căn thức bậc hai. B. Các dạng toán. C. Bài tập tự luyện. 4. Liên hệ giữa phép chia và phép khai phương. A. Tóm tắt lí thuyết. B. Dạng toán. 1. Khai phương một thương. 2. Chia hai căn thức bậc hai. C. Phương pháp giải toán. D. Bài tập tự luyện. 5. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. A. Tóm tắt lí thuyết. 1. Đưa một thừa số ra ngoài dấu căn. 2. Đưa một thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy dấu căn. 4. Trục căn thức ở mẫu. B. Các dạng toán. 1. Đưa một thừa số vào trong hoặc ra ngoài dấu căn. 2. Khử mẫu của biểu thức dưới dấu căn – phép nhân liên hợp. 3. Sử dụng các phép biến đổi căn thức bậc hai cho bài toán rút gọn và chứng minh đẳng thức. 4. Sử dụng các phép biến đổi căn thức bậc hai giải phương trình. C. Bài tập tự luyện. 6. Rút gọn biểu thức có chứa căn bậc hai. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Thực hiện phép tính rút gọn biểu thức có chứa căn bậc hai. 2. Giải phương trình. C. Bài tập tự luyện. 7. Căn bậc ba – căn bậc n. A. Tóm tắt lí thuyết. 1. Căn bậc ba. B. Phương pháp giải toán. 1. Thực hiện các phép tính với căn bậc 3 và bậc n. 2. Khử mẫu chứa căn bậc ba. 3. Giải phương trình chứa căn bậc ba. C. Bài tập tự luyện. Chương 2 . Hàm số bậc nhất. 1. Nhắc lại và bổ sung khái niệm về hàm số. A. Tóm tắt lí thuyết. 1. Khái niệm hàm số và đồ thị. 2. Tập xác định của hàm số. 3. Hàm số đồng biến, nghịch biến. B. Các dạng toán. 1. Sự xác định của một hàm số. 2. Tìm tập xác định của hàm số. 3. Xét tính chất biến thiên của hàm số. C. Bài tập tự luyện. 2. Hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Định nghĩa. B. Phương pháp giải toán. C. Bài tập luyện tập. 3. Đồ thị của hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số y = ax với a khác 0. 2. Đồ thị của hàm số y = ax + b với a khác 0. 3. Cách vẽ đồ thị hàm số bậc nhất. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Đường thẳng song song và đường thẳng cắt nhau. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Hệ số góc của đường thẳng. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. 1. Hệ số góc của đường thẳng. 2. Lập phương trình đường thẳng biết hệ số góc. C. Bài tập tự luyện. [ads] PHẦN II . HÌNH HỌC Chương 1 . Hệ thức lượng trong tam giác vuông. 1. Một số hệ thức về cạnh và đường cao của tam giác vuông. A. Tóm tắt lí thuyết. 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. 2. Một số hệ thức liên quan tới đường cao. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. 2. Tỉ số lượng giác. A. Tóm tắt lí thuyết. 1. Tỉ số lượng giác. 2. Giá trị lượng giác của các cung đặc biệt. 3. Hàm số lượng giác của hai góc phụ nhau. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. Chương 2 . Đường tròn. 1. Sự xác định đường tròn – tính chất đối xứng của đường tròn. A. Tóm tắt lí thuyết. 1. Nhắc lại về đường tròn. 2. Cách xác định đường tròn. 3. Tâm đối xứng – trục đối xứng. B. Các dạng toán. 1. Chứng minh nhiều điểm cùng nằm trên một đường tròn. 2. Quỹ tích điểm là một đường tròn. 3. Dựng đường tròn. C. Bài tập tự luyện. 2. Đường kính và dây cung của đường tròn. A. Tóm tắt lí thuyết. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. B. Phương pháp giải toán. 1. Giải bài toán định tính và định lượng. 2. Giải bài toán dựng hình. 3. Giải bài toán quỹ tích. C. Bài tập rèn luyện. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Vị trí tương đối của đường thẳng và đường tròn. A. Tóm tắt lý thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Tiếp tuyến của đường tròn. A. Tóm tắt lý thuyết. 1. Các tính chất của tiếp tuyến. B. Phương pháp giải toán. 1. Dựng tiếp tuyến của đường tròn. 2. Giải bài toán định tính và định lượng. 3. Chứng minh một đường thẳng là tiếp tuyến của đường tròn. 4. Sử dụng tính chất tiếp tuyến để tìm quỹ tích. C. Bài tập tự luyện. 6. Tính chất của hai tiếp tuyến cắt nhau. A. Tóm tắt lý thuyết. 1. Đường tròn nội tiếp tam giác. 2. Đường tròn bàng tiếp tam giác. B. Phương pháp giải toán. C. Bài tập luyện tập. D. Hướng dẫn – đáp số. 7. Vị trí tương đối của hai đường tròn. A. Tóm tắt lý thuyết. 1. Hai đường tròn có hai điểm chung. 2. Hai đường tròn chỉ có một điểm chung. 3. Hai đường tròn không có điểm chung. 4. Một số tính chất. B. Phương pháp giải toán. C. Bài tập luyện tập.
Tài liệu học tập Toán 9 chủ đề hàm số bậc nhất - Trần Quốc Nghĩa
Tài liệu gồm 69 trang được biên soạn bởi thầy Trần Quốc Nghĩa tổng hợp lý thuyết, ví dụ và bài tập chủ đề hàm số bậc nhất trong chương trình Đại số 9 chương 2. Mục lục tài liệu học tập Toán 9 chủ đề hàm số bậc nhất – Trần Quốc Nghĩa: Chủ đề 1 . Nhắc lại và bổ sung các khái niệm về hàm số. A – Tóm tắt lý thuyết. B – Các ví dụ. C – Bài tập tự luyện. D – Câu hỏi trắc nghiệm. Chủ đề 2 . Hàm số bậc nhất. A – Tóm tắt lý thuyết. B – Các ví dụ. C – Bài tập tự luyện. D – Câu hỏi trắc nghiệm. [ads] Chủ đề 3 . Đồ thị của hàm số y = ax + b (a khác 0). A – Tóm tắt lý thuyết. B – Các ví dụ. C – Bài tập tự luyện. D – Câu hỏi trắc nghiệm. Chủ đề 4 . Đường thẳng song song. Đường thẳng cắt nhau. A – Tóm tắt lý thuyết. B – Các ví dụ. C – Bài tập tự luyện. D – Câu hỏi trắc nghiệm. Chủ đề 5 . Hệ số góc của đường thẳng y = ax + b (a khác 0). A – Tóm tắt lý thuyết. B – Các ví dụ. C – Bài tập tự luyện. D – Câu hỏi trắc nghiệm. Ôn tập chương 2. A – Bài tập tự luyện. B – Câu hỏi trắc nghiệm.