Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Ninh. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho 19 điểm trong đó không có 3 điểm nào thẳng hàng nằm trong một hình lục giác đều có cạnh bằng 1. Chứng minh rằng luôn tồn tại một tam giác có ít nhất một góc không lớn hơn 450 và nằm trong đường tròn có bán kính nhỏ hơn 3/5. + Cho tam giác ABC vuông tại A AB AC ngoại tiếp đường tròn tâm O. Gọi DEF lần lượt là tiếp điểm của (O) với các cạnh AB AC BC. Đường thẳng BO cắt các đường thẳng EF DF lần lượt tại I K. 1. Tính số đo góc BIF. 2. Giả sử M là điểm di chuyển trên đoạn CE. a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A O H thẳng hàng. b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O); P Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ lớn nhất. + Cho phương trình: 2 2 x mx m m 2 6 0 (m là tham số). 1. Tìm m để phương trình có hai nghiệm. 2. Với giá trị nào của m thì phương trình có hai nghiệm 1 x và 2 x sao cho 1 2 x x 8.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Di Linh - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 10 tháng 11 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Di Linh – Lâm Đồng : + Một con Robot được thiết kế để có thể đi thẳng, quay một góc 90° sang trái hoặc sang phải. Robot xuất phát từ vị trí A0 đi thẳng 1cm, quay sang trái rồi đi thẳng 1cm, quay sang phải rồi đi thẳng 2cm, quay sang trái rồi đi thẳng 2cm, quay sang phải rồi đi thẳng 3cm, quay sang trái rồi đi thẳng 3cm … cuối cùng quay sang phải rồi đi thẳng 2022cm, quay sang trái rồi đi thẳng 2022cm thì đi đến đích ở vị trí A2022. Tính khoảng cách giữa nơi xuất phát và đích đến của con Robot. + Một đoàn từ thiện phát vở cho các học sinh có hoàn cảnh khó khăn. Nếu mỗi phần quà 22 quyển vở thì còn thừa một quyển. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà. Hỏi đoàn từ thiện có bao nhiêu quyển vở? Biết rằng mỗi phần quà không quá 30 quyển vở. + Cho tam giác ABC vuông tại A có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh BH = AC.
Đề HSG Toán 9 vòng 2 năm 2022 - 2023 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 23 tháng 11 năm 2022.
Đề HSG Toán 9 năm 2022 - 2023 trường THPT chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 11 năm 2022. Trích dẫn Đề HSG Toán 9 năm 2022 – 2023 trường THPT chuyên Lam Sơn – Thanh Hóa : + Hai số nguyên dương a, b được gọi là “cân bằng” nếu hai số này có cùng tập ước nguyên tố (ví dụ hai số 10 và 20 là cân bằng vì cùng có tập ước nguyên tố là {2;5}). Tìm tất cả các số nguyên dương n sao cho n và n + 6 là hai số “cân bằng” và n chia hết cho 4. + Cho đường tròn (O;R), đường kính AB cố định. Một điểm C di chuyển trên (O) (C khác A, B). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Vẽ CH vuông góc với AB tại H. 1. Vẽ CM song song với BI (M thuộc AI). Lấy điểm F thuộc AB sao cho AC = AF. Chứng minh CM vuông góc với FM. 2. Lấy điểm P trên tia đối của tia AC sao cho AP = AC. Gọi Q là trung điểm của HB, đường thẳng PH cắt CQ tại J. Chứng minh ACH = QJB. 3. Gọi K là tâm đường tròn nội tiếp tam giác AHC; đường thẳng CK cắt AB tại E. Hãy tìm vị trí điểm C trên đường tròn (O) sao cho diện tích tam giác CEF lớn nhất.
Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Cho ABC nhọn, các đường cao BE và CF cắt nhau tại H. Trên tia đối của tia EB lấy điểm P, trên tia đối của tia FC lấy điểm Q sao cho APC = AQB = 90°. a) Chứng minh: APQ cân tại A b) Gọi I là trung điểm của BC. Đường thẳng qua H và vuông góc với HI cắt AB, AC lần lượt tại M và N. Chứng minh: HM = HN c) Gọi O là giao điểm các đường phân giác của ABC. Chứng minh. + Cho hình chữ nhật và 2022 đường thẳng. Mỗi đường thẳng đều cắt hai cạnh đối diện của hình chữ nhật và chia hình chữ nhật thành hai tứ giác có tỉ lệ diện tích là 2022 : 2023. Chứng minh rằng trong số 2022 đường thẳng trên có ít nhất 506 đường thẳng cùng đi qua một điểm.