Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT An Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT An Giang; kỳ thi được diễn ra vào ngày 29 tháng 05 năm 2021; đề thi có đáp án và lời giải chi tiết (lời giải chi tiết được biên soạn bởi tác giả Đặng Lê Gia Khánh và Mai Đăng Khoa). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT An Giang : + Cho tam giác ABC (AB < BC) nội tiếp trong đường tròn (O) đường kính AC. Gọi I là một điểm thuộc đoạn OC (I khác O và C). Qua I kẻ đường vuông góc với AC cắt BC tại E và AB kéo dài tại D. Gọi K là điểm đối xứng của C qua điểm I. a. Chứng minh rằng các tứ giác BDCI và AKED nội tiếp. b. Chứng minh IC.IA = IE.ID. + Cho tam giác ABC đều có diện tích 36 cm2. Gọi M, N, P là ba điểm lần lượt nằm trên ba cạnh AB, BC, CA sao cho MN vuông góc BC; NP vuông góc AC; PM vuông góc AB. Chứng tỏ rằng tam giác MNP đều và tính diện tích tam giác MNP. + Hai ngọn nến hình trụ có chiều cao và đường kính khác nhau được đặt thẳng đứng trên mặt bàn. Ngọn nến thứ nhất cháy hết trong 6 giờ, ngọn nến thứ hai cháy hết trong 8 giờ. Hai ngọn nến được thắp sáng cùng lúc, sau 3 giờ chúng có cùng chiều cao. a. Tìm tỷ lệ chiều cao ban đầu của hai ngọn nến. b. Biết tổng chiều cao của hai ngọn nến là 63 cm. Tính chiều cao mỗi ngọn nến.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh lớp 10 THPT môn Toán Nghệ An 2022 - 2023 Đề thi thử tuyển sinh lớp 10 THPT môn Toán Nghệ An 2022 - 2023 Chào mừng đến với đề thi thử tuyển sinh lớp 10 THPT môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo Nghệ An. Đề thi bao gồm 05 bài toán dạng tự luận, được thi sinh thực hiện trong thời gian 120 phút (không tính thời gian phát đề). Kỳ thi sẽ diễn ra vào thứ Tư, ngày 08 tháng 06 năm 2022. Dưới đây là một số câu hỏi trích từ đề tuyển sinh: Cho phương trình \(x^2 + 3x - 1 = 0\) có hai nghiệm phân biệt \(x_1\) và \(x_2\). Hãy tính giá trị của biểu thức T. Trong SEA Games 31 tại Việt Nam, thú sao la được chọn làm linh vật. Một phân xưởng được giao sản xuất 420 thú nhồi bông sao la. Nếu mỗi giờ sản xuất thêm 5 thú nhồi bông sao la thì thời gian hoàn thành công việc sẽ rút ngắn 2 giờ. Hãy tính thời gian dự định của phân xưởng. Cho tam giác vuông \(ABC\) tại \(C\), đường cao \(CK\) và đường phân giác trong \(BD\). Gọi \(D\) là đường thẳng vuông góc với \(AC\) cắt \(CK\), \(AB\) lần lượt tại \(H\) và \(I\). Hãy chứng minh các phát biểu liên quan đến tứ giác \(CDKI\) và \(AD.AC = DH.AB\), cũng như chứng minh \(B, N, F\) thẳng hàng với nhau. Hy vọng rằng đề thi thử này sẽ giúp các em học sinh lớp 9 Nghệ An ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hải Dương Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hải Dương Xin chào đến với Sytu, nơi chúng tôi muốn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương. Kỳ thi dự kiến diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Chúng tôi hy vọng rằng đề thi sẽ giúp các em học sinh chuẩn bị tốt nhất cho kỳ thi sắp tới, cung cấp cho họ cơ hội để thể hiện kiến thức và kỹ năng của mình trong môn Toán. Đề thi này được thiết kế để đánh giá sâu hơn và không chỉ kiểm tra kiến thức cơ bản mà còn khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyet vấn đề của học sinh. Hãy cùng chúng tôi chia sẻ niềm đam mê và hứng thú với Toán, nhằm giúp các em học sinh phát triển toàn diện và tự tin trước thách thức của kỳ thi tuyển sinh sắp tới. Chúng tôi hy vọng rằng đề thi này sẽ là bước đệm quan trọng cho sự thành công của các em trong hành trình học tập và phát triển cá nhân. Chúc các em ôn tập hiệu quả và đạt kết quả tốt trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Bến Tre
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Bến Tre Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh Môn Toán (Chuyên) Năm 2022-2023 Trường Chuyên Bến Tre Đề Thi Tuyển Sinh Môn Toán (Chuyên) Năm 2022-2023 Trường Chuyên Bến Tre Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022-2023 của trường THPT chuyên Bến Tre, tỉnh Bến Tre. Đề thi gồm 1 trang với 7 bài toán dạng tự luận, thời gian làm bài thi là 150 phút (không tính thời gian phát đề). Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Đề thi bám sát chương trình Toán chuyên cấp 3, mang lại cơ hội cho các em thí sinh thử sức, kiểm tra kiến thức và kỹ năng làm bài. Hy vọng rằng đề thi sẽ giúp các em tự tin và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em thành công!
Đề tuyển sinh môn Toán năm 2022 2023 trường THPT chuyên Hà Tĩnh
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 trường THPT chuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh Đề thi tuyển sinh môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 - 2023 tại trường THPT chuyên Hà Tĩnh. Kỳ thi sẽ diễn ra vào thứ Ba, ngày 07 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh: + Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm phân biệt A và B. Trên tia đối của tia AB lấy điểm M, kẻ các tiếp tuyến ME, MF với đường tròn (O'), trong đó E và F thuộc đường tròn (O'), F nằm trong đường tròn (O). Hai đường thẳng AE và AF cắt đường tròn (O) lần lượt tại P và Q (P và Q khác A). Tia EF cắt PQ tại K. a) Chứng minh tam giác BKP đồng dạng với tam giác BFA. b) Gọi I và J lần lượt là giao điểm của AB với OO' và EF. Chứng minh IJE = IFM. c) Chứng minh PQ = 2OA^2 - OK^2. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 3abc. Tìm giá trị lớn nhất của biểu thức P. + Lớp 9A có 34 học sinh, mỗi học sinh tham gia đúng một câu lạc bộ của trường. Nếu chọn ra 10 học sinh bất kì của lớp này thì luôn có ít nhất 3 học sinh tham gia cùng một câu lạc bộ. Chứng minh rằng có một câu lạc bộ gồm ít nhất 9 học sinh lớp 9A tham gia.