Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng - Nhóm Toán

Tài liệu tuyển chọn 600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng có đáp án được biên soạn bởi các thầy cô trên groups Nhóm Toán gồm 96 trang được chia thành 8 đề. Trích dẫn tài liệu : + Diện tích hình phẳng giới hạn bởi hai đường thẳng x = 0, x = π và đồ thị của hai hàm số y = cosx, y = sinx là: A. 2 + √2   B. 2 C. √2   D. 2√2 + Khẳng định nào sau đây đúng? A. Nếu w'(t) là tốc độ tăng trưởng cân nặng/năm của một đứa trẻ, thì tích phân từ 5 đến 10 của hàm số w'(t)dt là sự cân nặng của đứa trẻ giữa 5 và 10 tuổi. B. Nếu dầu rò rỉ từ 1 cái thùng với tốc độ r(t) tính bằng galông/phút tại thời gian t, thì tích phân từ 0 đến 120 của hàm số r(t)dt biểu thị lượng galông dầu rò rỉ trong 2 giờ đầu tiên. [ads] C. Nếu r(t) là tốc độ tiêu thụ dầu của thế giới, trong đó t được bằng năm, bắt đầu tại t = 0 vào ngày 1 tháng 1 năm 2000 và r(t) được tính bằng thùng/năm, tích phân từ 0 đến 17 của hàm số r(t)dt biểu thị số lượng thùng dầu tiêu thụ từ ngày 1 tháng 1 năm 2000 đến ngày 1 tháng 1 năm 2017. D. Cả A, B, C đều đúng. + Cho hàm số f(x) = sin2x.cosx và các mệnh đề sau: i) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C ii) Họ nguyên hàm của hàm số là -1/6.cos3x – 1/2cosx + C ii) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C A. Chỉ có duy nhất một mệnh đề đúng B. Có hai mệnh đề đúng C. Không có mệnh đề nào đúng D. Cả ba mệnh đều đều đúng

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Tích phân - Đặng Thành Nam
Chuyên đề tích phân hướng dẫn phương pháp giải tích phân kèm theo ví dụ minh họa có lời giải chi tiết và các bài tập tự luyện. Các bài toán tích phân trong đề thi TSĐH được đánh giá là bài toán quan trọng, luôn xuất hiện dưới dạng tính tích phân trực tiếp hoặc là xác định diện tích, thể tích giới hạn bởi các đường cong. Để làm tốt dạng toán này học sinh nên lưu ý nhớ và vận dụng lịnh hoạt công thức các nguyên hàm cơ bản, cách xác định công thức tính thể tích và diện tích giới hạn bởi các đường cong. Hai phương pháp cơ bản được sử dụng xuyên suốt cho các bài toán tích phân là đổi biến và tích phân từng phần. [ads] Các dạng tích phân được đề cập : + Một số bài toán cơ bản + Tích phân các hàm phân thức hữu tỉ + Một số bài toán tích phân có mẫu số là đa thức + Tích phân hàm vô tỷ + Phương pháp tích phân từng phần + Tích phân với hàm số lượng giác + Dạng toán bổ sung + Tích phân của hàm tuần hoàn + Tích phân liên kết + Phương pháp đổi biến số không làm thay đổi cận + Đổi biến số dưới dạng lượng giác hóa + Bài toán diện tích hình phẳng và thể tích vật tròn xoay
Chuyên đề Tích phân - Thầy Trần Đình Cư - TP Huế
Tài liệu gồm 110 trang tóm tắt lý thuyết, phân dạng và hướng dẫn giải các bài tập nguyên hàm, tích phân và ứng dụng. Các chuyên mục có trong chuyên đề tích phân của thầy Trần Đình Cư gồm có: A. Nguyên hàm B. Tích phân C. Phân loại và phương pháp tính tích phân – Vấn đề 1: Phép thay biến – Vấn đê 2: Tích phân bằng phương pháp lượng giác hóa – Vấn đề 3: Tích phân lượng giác – Vấn đề 4: Tích phân có chứa giá trị tuyệt đối – Vấn đề 5: Tích phân hàm hữu tỉ [ads] – Vấn đề 6: Tích phân một số hàm đặc biệt – Vấn đề 7: Tích phân từng phần – Vấn đề 8: Ứng dụng tích phân tính diện tích hình phẳng – Vấn đề 9: Tính thể tích vật thể tròn Một số bài tập cần làm trước khi thi Phương pháp đặt ẩn phụ không làm thay đổi cận tích phân Sai lầm thường gặp trong tính tích phân Đề thi đại học từ 2009-2012
Công cụ tính nguyên hàm trực tuyến
Tìm nguyên hàm trực tuyến theo chỉ dẫn bên dưới: + Bước 1: Mở trang công cụ tìm nguyên hàm trực tuyến tại đây . + Bước 2: Nhập hàm cần tính nguyên hàm vào khung tính theo dạng: int f(x) dx , trong đó f(x) là hàm cần tìm nguyên hàm. Ví dụ : Cần tìm nguyên hàm của hàm sinx ta nhập int sinx dx. Nhấn Enter để công cụ bắt đầu tính toán. Xem kết quả bên dưới ô tính. Cách nhập các hàm phức tạp: Để gõ các hàm phức tạp như hàm chưa lũy thừa, phân số, dấu căn … ta gõ theo ngôn ngữ Latex Toán học. Ví dụ : 1. Phân số a/b 2. Lũy thừa a^b 3. Căn bậc hai của a, ta nhập sqrt(a) 4. Căn bậc n của a, ta có thể nhập a^(1/n)
5 bài tập Tích phân dạng đặc biệt có lời giải - Trần Sĩ Tùng
Tài liệu chỉ gồm 2 trang với 5 bài toán tích phân dạng đặc biệt có lời giải chi tiết. Đây là dạng toán tích phân khá hay, được giải bằng cách các phương pháp độc đáo.