Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khảo sát Toán tuyển sinh năm 2019 2020 trường Trương Công Định Hải Phòng

Nội dung Khảo sát Toán tuyển sinh năm 2019 2020 trường Trương Công Định Hải Phòng Bản PDF Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 - 2020 của trường THCS Trương Công Định ở Hải Phòng đưa ra các bài toán phức tạp, đòi hỏi học sinh phải áp dụng kiến thức toán học một cách linh hoạt và chính xác để giải quyết.

Trong đó, bài toán đầu tiên yêu cầu học sinh tìm tọa độ giao điểm giữa parabol và đường thẳng, sau đó đưa ra điều kiện để đường thẳng cắt parabol tại hai điểm phân biệt nằm cùng phía bên phải trục tung. Bài toán này không chỉ cần kiến thức căn bản về parabol mà còn đòi hỏi học sinh phải lưu ý đến điều kiện vị trí của hai đường thẳng và parabol để tìm ra đáp án chính xác.

Bài toán thứ hai liên quan đến việc áp dụng quy định về xử phạt vi phạm tốc độ giao thông để giải quyết vấn đề thực tế. Học sinh cần tính toán vận tốc của hai xe ô tô trên đường cao tốc và xác định xem liệu có xe nào vi phạm tốc độ hay không. Nếu có vi phạm, họ cần tính toán mức xử phạt tiền theo quy định của pháp luật. Bài toán này không chỉ giúp học sinh hiểu về quy định giao thông mà còn rèn luyện kỹ năng tính toán và suy luận.

Cuối cùng, bài toán cuối cùng yêu cầu học sinh tính diện tích xung quanh của hình trụ được tạo ra từ việc quay hình chữ nhật. Đây là một bài toán đòi hỏi học sinh phải áp dụng kiến thức về hình học không gian để giải quyết, từ đó phát triển kỹ năng về tính toán và suy luận.

Tổng thể, bài khảo sát Toán tuyển sinh năm 2019 - 2020 của trường Trương Công Định ở Hải Phòng đưa ra các bài toán đa dạng, đòi hỏi học sinh phải sử dụng nhiều khía cạnh của kiến thức toán học để giải quyết. Đồng thời, bài toán cũng giúp học sinh nhận thức về thực tế và áp dụng kiến thức vào cuộc sống hàng ngày.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a và b để đường thẳng (d) có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình x2 − 2mx – m2 − 2 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 (với x1 < x2) thỏa mãn hệ thức x2 − 2|x1| – 3x1x2 = 3m2 + 3m + 4. + Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA, MB đến (O) (với A và B là các tiếp điểm). Gọi C là điểm đối xứng với B qua O, đường thẳng MC cắt đường tròn (O) tại D (D khác C). 1. Chứng minh MAOB là tứ giác nội tiếp. 2. Gọi N là giao điểm của hai đường thẳng AD và MO. Chứng minh MN2 = ND.NA. 3. Gọi H là giao điểm của MO và AB. Chứng minh (HA/HD)^2 – AC/HN = 1.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Một khu vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích của khu vườn, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi khu vườn không thay đổi. + Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm chính giữa cung AB, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn BE sao cho BF = AE. Gọi K là giao điểm của MO và BE. a) Chứng minh rằng EAOK là tứ giác nội tiếp. b) Chứng minh rằng AEMF vuông cân. c) Hai đường thẳng AE và OM cắt nhau tại D. Chứng minh rằng MK.ED = MD.EK. + Bút chì có dạng hình trụ, có đường kính đáy 8mm và chiều cao bằng 180mm. Thân bút chì được làm bằng gỗ, phần lõi được làm bằng than chì. Phần lõi có dạng hình trụ có chiều cao bằng chiều dài bút và đáy là hình tròn có đường kính 2mm. Tính thể tích phần gỗ của 2024 chiếc bút chì (lấy pi = 3,14).
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Đà Nẵng; đề thi dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, Đà Nẵng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Đà Nẵng : + Trên cùng một mặt phẳng tọa độ, cho parabol (P): y = x2 và đường thẳng (d): y = kx + 5. Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox. a) Khi k = −4, tính diện tích hình thang ABDC. b) Tìm tất cả các giá trị của k để AD và BC cắt nhau tại một điểm nằm trên đường tròn đường kính CD. + Cho tam giác nhọn ABC với AB < AC, nội tiếp đường tròn (O). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở D. Đường tròn đường kính AD cắt đường tròn đường kính OD tại điểm E (khác D). Gọi F là giao điểm của đoạn thẳng OE và đường tròn (O). a) Chứng minh rằng ba điểm A, O, E thẳng hàng và CF là tia phân giác của góc BCE. b) Các tia AB, AC lần lượt cắt đường tròn đường kính AD tại các điểm G, K (đều khác A). Chứng minh rằng OD đi qua trung điểm của đoạn thẳng GK. + Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy các điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F). Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác DEF và các đường thẳng CM, ED, GH đồng quy.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Bình (đề thi chung dành cho tất cả các thí sinh tham dự kỳ thi). Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thái Bình : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = 2×2 và đường thẳng (d): y = x + m (với m là tham số). a) Tìm m để (d) đi qua điểm A(2;8). b) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x1 + x2 – 3x1x2 = 5. + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R). Kẻ AH vuông góc với BC tại H, HK vuông góc với AB tại K và HI vuông góc với AC tại I. a) Chứng minh tứ giác AKHI nội tiếp. b) Gọi E là giao điểm của AH với KI. Chứng minh rằng EA.EH = EK.EI. c) Chứng minh KI vuông góc với AO. d) Giả sử điểm A và đường tròn (O;R) cố định, còn dây cung BC thay đổi sao cho AB.AC = 3R2. Xác định vị trí của dây cung BC sao cho tam giác ABC có diện tích lớn nhất. + Một hình nón có diện tích đáy bằng 167 (cm2) và có chiều cao gấp ba lần bán kính đáy. Tính thể tích của hình nón đó.