Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình

Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cộng Hòa - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đội tuyển học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cộng Hòa, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cộng Hòa – Hải Dương : + Tìm tất cả các số nguyên tố p để 4p2 + 1 và 6p2 + 1 cũng là số nguyên tố. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Trên các đoạn thẳng HA, HB, HC lần lượt lấy các điểm M, N, P sao cho BMC = CNA = APB = 90°. a) Chứng minh tam giác ANP cân. b) Gọi S, S1, S2 lần lượt là diện tích các tam giác MBC, ABC và HBC. Chứng minh rằng: S = S1S2 2) Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của góc BAH cắt BH ở D. Gọi M là trung điểm của cạnh AB. Gọi E là giao điểm của MD và AH. Chứng minh rằng: AD // CE. + Cho a, b, c là các số thực dương thỏa mãn a2 + b2 + c2 =< 3. Chứng minh rằng?
Đề thi thử HSG Toán 9 năm 2022 - 2023 trường THCS Lai Vu - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Lai Vu, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi thử HSG Toán 9 năm 2022 – 2023 trường THCS Lai Vu – Hải Dương : + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm AH, BD cắt AC tại E. Kẻ HK song song với AE (K thuộc BE) a) Chứng minh cos2B = EA/EC. b) Gọi M là điểm đối xứng của A qua B, N thuộc tia đối của tia HA sao cho HN = 2HA. Gọi P là trung điểm của HN. Chứng minh MN vuông góc NC. + Cho tam giác ABC vuông tại A (AB < AC), các đường phân giác trong và ngoài tại đỉnh A của tam giác cắt BC lần lượt tại M, N. Chứng minh 1 1 1 AM AN AB. + Cho các số nguyên dương a, b thỏa mãn: (a – 2021)(b + 2021) = 4 và ba số thực dương x; y; z sao cho xyz = 1. Chứng minh rằng?
Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.